scholarly journals Molecular characterization of pearl millet [Pennisetum glaucum (L.) R. Br] inbreds using microsatellite markers

2017 ◽  
Vol 9 (1) ◽  
pp. 357-363 ◽  
Author(s):  
Mamta Nehra ◽  
Mukesh Kumar ◽  
Dev Vart ◽  
Jyoti Kaushik ◽  
Rajesh Kumar Sharma

Studies on genetic diversity in Pennisetum germplasm are the promising opportunities for the use of un-domesticated materials for improving pearl millet varieties. DNA based markers have now emerged as a potential genomic tool for estimation of genetic diversity among various cultivars and varietal identification. In present study, genetic diversity among 49 stay green inbreds of pearl millet was studied using simple sequence repeats (SSRs). Twenty nine polymorphic SSR primers, identified after initial screening of 70, were used to study diversity among these lines. A total of 108 alleles were amplified, collectively yielding unique SSR profiles for all the 49 inbreds. The average number of SSR alleles per locus was 3.72, with a range from 2 to 13. Polymorphic information content (PIC) values of various SSR loci across all the 49 inbreds ranged from 0.14 to 0.87 with an average of 0.51 per lo-cus. This indicated sufficient diversity among the 49 pearl millet inbreds and total 5 out of 29 polymorphic SSR loci, namely Xpsmp2070, Xpsmp2001, Xpsmp2008, Xpsmp2066, Xpsmp2072 revealed PIC values above 0.70, can be considered highly useful for differentiation of pearl millet inbred lines. The lowest PIC value (0.47) for linkage group 7 showed comparatively conserved nature of this linkage group A dendrogram obtained using WARD’s minimum variance method further delineates 49 inbreds into 8 major clusters, and the clustering pattern corroborated with their pedigree and characteristics traits.

Author(s):  
Syeda Asma Koinain ◽  
V S Hegde ◽  
C . Bharadwaj

Genetic diversity among 30 chickpea genotypes was evaluated using simple sequence repeat (SSR) molecular markers. The studies using Sequence Tagged Microsatellite Site (STMS) markers markers revealed that among the primers used across the genotypes produced a total of 35 alleles representing 21 SSR loci with frequencies ranging from one to two (mean 1.66) alleles per locus. Polymorphic Information Content (PIC) ranged from 0.098 to 0.500 (CAM0443, CAM0446). These primers might be an effective and useful tool to determine the genetic differences among chickpea genotypes and to study the phylogenetic relationships. Polymorphic percentage was 96.42. Hierarchical neighbour-joining UPGMA cluster analysis based on simple matching similarity matrix resolved the 30 genotypes into seven clusters. Based on STMS markers highest similarity index 0.850 was observed between BGD 72 and Annigeri-1whereas BGD 9920 and ICC 92944 showed the lowest similarity index 0.214 between them. The STMS clustering pattern indicated the presence of wide genetic diversity between the genotypes. Overall, the study ascertained that SSRs provide powerful marker tools in revealing genetic diversity and relationships in chickpeas, thereby proving useful for selection of parents in breeding programs and also for DNA fingerprinting for identification of cultivars.


Author(s):  
Supriya Ambawat ◽  
C. Tara Satyavathi ◽  
Rajbala Meena ◽  
Vikas Khandelwal ◽  
R. C. Meena

Pearl millet is a climate-resilient crop which is most widely grown in the arid and semi-arid tropics of Asia and Africa over 26 mha. It is a highly nutritious cereal crop and rightly termed as nutricereal. This crop requires low inputs and delivers high cost-effective benefits. Development of high yielding hybrids is the major target of pearl millet researchers globally. The understanding of genetic diversity is very important and must for developing superior hybrids and crop improvement programs. In the present study, we evaluated the diversity among 30 different released hybrids and varieties of pearl millet using 125 Simple Sequence Repeat (SSR) markers. Out of these, 61 polymorphic SSRs were reported giving 191 alleles with an average of 3.13 alleles per primer. Polymorphic Information Content (PIC) varied from 0.33 to 0.76 with an average of 0.55 PIC value. The cluster analysis based on these SSR markers categorized the genotypes into four major clusters viz., I, II, III, IV with similarity coefficient ranging from 0.58 to 0.73. The results depicted that sufficient genetic variability exists among the different hybrids and varieties used in the study which can further prove useful for pearl millet improvement programs. The study also reveals that SSR markers are proficient and may be used efficiently for genetic diversity studies in pearl millet. It is also anticipated that findings of this study may be further used for DNA fingerprinting and varietal identification.


2017 ◽  
Vol 16 (15) ◽  
pp. 782-790 ◽  
Author(s):  
ADEOTI Kifouli ◽  
DJEDATIN Gustave ◽  
EWEDJE Ebenezer ◽  
BEULE Thierry ◽  
SANTONI Sylvain ◽  
...  

2019 ◽  
Vol 7 (2) ◽  
pp. 060-070
Author(s):  
Abdulhakeem Abubakar ◽  
Olamide Ahmed Falusi ◽  
Matthew Omoniyi Adebola ◽  
Oladipupo Abdulazeez Yusuf Daudu

2020 ◽  
Vol 11 ◽  
Author(s):  
Man Liu ◽  
Xin Hu ◽  
Xu Wang ◽  
Jingjing Zhang ◽  
Xubing Peng ◽  
...  

Angelica biserrata is an important medicinal plant in Chinese traditional medicine. Its roots, which are known as Duhuo in Chinese, are broadly applied to treat inflammation, arthritis, and headache. With increasing market demand, the wild resources of A. biserrata have been overexploited, and conservation, assessment of genetic resources and breeding for this species is needed. Here, we sequenced the transcriptome of A. biserrata and developed simple sequence repeat (SSR) markers from it to construct a core collection based on 208 samples collected from Changyang-related regions. A total of 132 alleles were obtained for 17 SSR loci used with the polymorphic information content (PIC) ranging from 0.44 to 0.83. Abundant genetic diversity was inferred by Shannon’s information index (1.51), observed (0.57) and expected heterozygosity (0.72). The clustering analysis resulted into two sample groups and analysis of molecular variance (AMOVA) showed only 6% genetic variation existed among populations. A further metabolic analysis of these samples revealed the main coumarin contents, such as osthole and columbianadin. According to the genetic and metabolic data, we adopted the least distance stepwise sampling strategy to construct seven preliminary core collections, of which the 20CC collection, which possessed 42 A. biserrata individuals accounting for 90.20% of the genetic diversity of the original germplasm, represented the best core collection. This study will contribute to the conservation and management of A. biserrata wild germplasm resources and provide a material basis for future selection and breeding of this medicinal plant.


2020 ◽  
Vol 73 (4) ◽  
Author(s):  
Salem Marzougui ◽  
Mohamed Kharrat ◽  
Mongi Ben Younes

In barley breeding programs, information about genetic dissimilarity and population structure is very important for genetic diversity conservation and new cultivar development. This study aimed to evaluate the genetic variation in Tunisian barley accessions (<em>Hordeum</em><em> </em><em>vulgare </em>L.) based on simple sequence repeat (SSR). A total of 89 alleles were detected at 26 SSR loci. The allele number per locus ranged from two to five, with an average of 3.4 alleles per locus detected from 32 barley accessions, and the average value of polymorphic information content was 0.45. A cluster analysis based on genetic similarity was performed, and the 32 barley resources were classified into five groups. Principal coordinates (PCoA) explained 12.5% and 9.3% of the total variation, and the PCoA was largely consistent with the results of cluster separation of STRUCTURE software analysis. The analysis of genetic diversity in barley collection will facilitate cultivar development and effective use of genetic resources.


Sign in / Sign up

Export Citation Format

Share Document