scholarly journals RECOVERY OF METALS FROM ELECTROACTIVE COMPONENTS OF SPENT Ni-MH BATTERIES AFTER LEACHING WITH FORMIC ACID

Detritus ◽  
2021 ◽  
pp. 68-77
Author(s):  
Pedro Rosário Gismonti ◽  
Jéssica Frontino Paulino ◽  
Julio Afonso

this work describes a route for recovering nickel, cobalt, iron, zinc and lanthanides from spent nickel-metal hydride batteries. Formic acid was used as leachant. Experiments were run at 25-50°C for 1-4 h. Under the best conditions leaching yields surpassed 99 wt.%, except for iron. The insoluble matter contains almost solely iron as iron(III) basic formate. The leachate went through six separation procedures, combining solvent extraction with D2EHPA as extractant, and precipitation reactions. Fe2+ and Zn2+ were extracted together (> 99 wt.%) from the original leachate (pH ~1.5). Yttrium and lanthanides were precipitated as oxalates directly from the raffinate (> 99.9 wt.%) upon addition of sodium oxalate. In the next steps, Mn2+ and Co2+ were extracted with D2EHPA at buffered pH (3 and ~4.8, respectively), after adding NaOHaq. About 10 wt.% of leached Ni2+ was coextracted with Co2+. The remaining Ni2+ was precipitated from the raffinate after addition of aqueous sodium oxalate at pH 6. After precipitation of Al3+ upon addition of NaOHaq. until pH ~8, sodium formate was recovered after slow evaporation of the final aqueous solution at 60oC. It contains ~90 wt.% of the formate present in the leachant.

2015 ◽  
Vol 80 (13) ◽  
pp. 6784-6793 ◽  
Author(s):  
Rina Soni ◽  
Thomas H. Hall ◽  
Benjamin P. Mitchell ◽  
Matthew R. Owen ◽  
Martin Wills

ChemInform ◽  
2015 ◽  
Vol 46 (45) ◽  
pp. no-no
Author(s):  
Rina Soni ◽  
Thomas H. Hall ◽  
Benjamin P. Mitchell ◽  
Matthew R. Owen ◽  
Martin Wills

Author(s):  
G. M. Micha ◽  
L. Zhang

RENi5 (RE: rare earth) based alloys have been extensively evaluated for use as an electrode material for nickel-metal hydride batteries. A variety of alloys have been developed from the prototype intermetallic compound LaNi5. The use of mischmetal as a source of rare earth combined with transition metal and Al substitutions for Ni has caused the evolution of the alloy from a binary compound to one containing eight or more elements. This study evaluated the microstructural features of a complex commercial RENi5 based alloy using scanning and transmission electron microscopy.The alloy was evaluated in the as-cast condition. Its chemistry in at. pct. determined by bulk techniques was 12.1 La, 3.2 Ce, 1.5 Pr, 4.9 Nd, 50.2 Ni, 10.4 Co, 5.3 Mn and 2.0 Al. The as-cast material was of low strength, very brittle and contained a multitude of internal cracks. TEM foils could only be prepared by first embedding pieces of the alloy in epoxy.


2008 ◽  
Vol 59 (9) ◽  
Author(s):  
Violeta Vasilache ◽  
Gheorghe Gutt ◽  
Traian Vasilache

The electrochemical deposition of zinc and combinations with elements of the 8th group of the Periodic System (nickel, cobalt, iron) have good properties for anticorrosive protection, compared with pure zinc. For steel pieces, these films delay apparition and formation of white and red iron oxide. We used solutions with different concentrations of zinc chloride, nickel chloride and potassium chloride. To analyze the results we used the optic microscope and the X-ray diffraction.


2021 ◽  
Vol 125 ◽  
pp. 154-162 ◽  
Author(s):  
Silvia J.R. Vargas ◽  
Nicolas Schaeffer ◽  
Jamille C. Souza ◽  
Luis H.M. da Silva ◽  
Maria C. Hespanhol

2021 ◽  
Author(s):  
Yusuke Minami ◽  
Yutaka Amao

Formate is attracting attention as a hydrogen carrier because of its low toxicity and easy handling in aqueous solution. In order to utilize formic acid as a hydrogen carrier, a...


1966 ◽  
Vol 44 (24) ◽  
pp. 3057-3062 ◽  
Author(s):  
P. G. Manning

The partitioning of radiotracer 152/151Eu between aqueous sodium oxalate (Na2L) solutions and toluene solutions of thenoyltrifluoroacetone (HTTA) has been studied as a function of the oxalate concentration. The pH of the aqueous phase was controlled by means of sodium acetate – acetic acid mixtures and the ionic strength (I) by NaCl or NaClO4.At low ionic strengths (~0.05) and [L] ~10−4 M EuL+ formed, but at I = 0.95 and [L] ~10−3 M EuL2− also formed. Stability constants for the 1:1 and 1:2 (metal:ligand) complexes are reported.The magnitudes of the stepwise stability constant ratios are discussed.


Sign in / Sign up

Export Citation Format

Share Document