scholarly journals Building 1D Mechanical Earth Model for Zubair Oilfield in Iraq

2020 ◽  
Vol 26 (5) ◽  
pp. 47-63
Author(s):  
Aows Khalid Neeamy ◽  
Nada Sabah Selman

Many problems were encountered during the drilling operations in Zubair oilfield. Stuckpipe, wellbore instability, breakouts and washouts, which increased the critical limits problems, were observed in many wells in this field, therefore an extra non-productive time added to the total drilling time, which will lead to an extra cost spent. A 1D Mechanical Earth Model (1D MEM) was built to suggest many solutions to such types of problems. An overpressured zone is noticed and an alternative mud weigh window is predicted depending on the results of the 1D MEM. Results of this study are diagnosed and wellbore instability problems are predicted in an efficient way using the 1D MEM. Suitable alternative solutions are presented ahead to the drilling process commences in the future operations.

2020 ◽  
Vol 26 (3) ◽  
pp. 55-64
Author(s):  
Aows Khalid Neeamy ◽  
Nada Sabah Selman

One of the wellbore instability problems in vertical wells are breakouts in Zubair oilfield. Breakouts, if exceeds its critical limits will produce problems such as loss circulation which will add to the non-productive time (NPT) thus increasing loss in costs and in total revenues. In this paper, three of the available rock failure criteria (Mohr-Coulomb, Mogi-Coulomb and Modified-Lade) are used to study and predict the occurrence of the breakouts. It is found that there is an increase over the allowable breakout limit in breakout width in Tanuma shaly formation and it was predicted using Mohr-Coulomb criterion. An increase in the pore pressure was predicted in Tanuma shaly formation, thus; a new mud weight and casing programs are proposed to overcome such problems in the drilling operations in field developments plans.


2019 ◽  
Vol 290 ◽  
pp. 10003
Author(s):  
Ion Foidaş ◽  
Dan-Paul Ștefănescu ◽  
Mihai Serbancea

Mankind’s increased requirement for and dependence on energy resources, including the resources resulting from discovery and development of new hydrocarbon commercial reservoirs involves the use of new technologies such as optimization of the drilling process by reducing the non-productive time, the costs and the risks. Casing while drilling involves elimination of classical drilling string by using the casing string both for transmission to the bit of the mechanical energy and for circulation of drilling fluid into the well. Although there is a number of technical or perception barriers related to the use of casing drilling, the important benefits of this technology related to reduced drilling time and problems associated to the drilling string make it an increasingly viable alternative to conventional drilling. The experience in applying this technology has proven that it can reduce the time of well execution and sometimes it lowers the costs in relation to drilling depth.


2021 ◽  
Author(s):  
Ming Yi ◽  
Ling Liu ◽  
Qiang Wei ◽  
Liang Chen ◽  
Binging Li ◽  
...  

Abstract Exploration focus is moving into deeper targets of high pressure and high temperature (HPHT) regime due to the ever-increasing energy demand of China. Overpressure and wellbore instability related problems in such setting are mainly associated with narrow drilling margin resulting in severe well control incidents and increased drilling cost. In order to reduce drilling risks and operation costs, an accurate geomechanical model is necessary. The model provides technical support for drilling process and minimum reservoir damage due to optimal mud weight program. Well-scale (1D) Mechanical Earth Model (MEM) is constructed on the offset wells which consist of rock strength properties and stress profile by incorporating all available data including open hole log data, geomechanical core lab results, LOT/FIT, direct pore pressure measurements and drilling events. Furthermore, 3D geomechanics model is generated using available well-scale MEM data in the field and distributed throughout the field which guided by seismic interpretation data as distribution control. The 3D geomechanical model is used to design mud weight and casing program for the upcoming well. The offset wells in the study areas were drilled through complex geological settings with high overpressure (13500 psi) and high temperature (200-220 deg C). Therefore, drilling operations is also risky with different types of drilling events encountered frequently including stuck pipe, inflow, losses and connection gas etc. With 3D geomechanical model as the foundation, the integrated approach helps ultra-deep wells to reduce serious wellbore instability caused by abnormal formation pressure, wellbore collapse and other complex drilling problems. The implementation of systematic and holistic workflow has proven to be extremely successful in supporting the drilling of HPHT wells in China. The integrated solution has been applied in the ultra-deep well, recorded an improvement in ROP by 35.3% and decrease no-productive time (NPT) by 25.3% compared with offset well. The geomechanical approach provides a convenient means to assist field engineers in the optimization of mud weight, risk assessment, and evaluation of HPHT wells drilling performance. The findings will provide reference and guideline for de-risk and performance improvement in HPHT wells drilling.


2020 ◽  
Vol 8 (1) ◽  
Author(s):  
Sandra Schumacher ◽  
Inga Moeck

Abstract Temperature logs recorded shortly after drilling operations can be the only temperature information from deep wells. However, these measurements are still influenced by the thermal disturbance caused by drilling and therefore do not represent true rock temperatures. The magnitude of the thermal disturbance is dependent on many factors such as drilling time, logging procedure or mud temperature. However, often old well reports lack this crucial information so that conventional corrections on temperature logs cannot be performed. This impedes the re-evaluation of well data for new exploration purposes, e.g. for geothermal resources. This study presents a new method to correct log temperatures in low-enthalpy play types which only requires a knowledge of the final depth of the well as an input parameter. The method was developed and verified using existing well data from an intracratonic sedimentary basin, the eastern part of the North German Basin. It can be transferred to other basins with little or no adjustment.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Qiang Fang ◽  
Ze-Min Pan ◽  
Bing Han ◽  
Shao-Hua Fei ◽  
Guan-Hua Xu ◽  
...  

Drilling carbon fiber reinforced plastics and titanium (CFRP/Ti) stacks is one of the most important activities in aircraft assembly. It is favorable to use different drilling parameters for each layer due to their dissimilar machining properties. However, large aircraft parts with changing profiles lead to variation of thickness along the profiles, which makes it challenging to adapt the cutting parameters for different materials being drilled. This paper proposes a force sensorless method based on cutting force observer for monitoring the thrust force and identifying the drilling material during the drilling process. The cutting force observer, which is the combination of an adaptive disturbance observer and friction force model, is used to estimate the thrust force. An in-process algorithm is developed to monitor the variation of the thrust force for detecting the stack interface between the CFRP and titanium materials. Robotic orbital drilling experiments have been conducted on CFRP/Ti stacks. The estimate error of the cutting force observer was less than 13%, and the stack interface was detected in 0.25 s (or 0.05 mm) before or after the tool transited it. The results show that the proposed method can successfully detect the CFRP/Ti stack interface for the cutting parameters adaptation.


2003 ◽  
Author(s):  
P. M. Doyen ◽  
A. Malinverno ◽  
R. Prioul ◽  
P. Hooyman ◽  
S. Noeth ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 969
Author(s):  
Eric Cayeux ◽  
Benoît Daireaux ◽  
Adrian Ambrus ◽  
Rodica Mihai ◽  
Liv Carlsen

The drilling process is complex because unexpected situations may occur at any time. Furthermore, the drilling system is extremely long and slender, therefore prone to vibrations and often being dominated by long transient periods. Adding the fact that measurements are not well distributed along the drilling system, with the majority of real-time measurements only available at the top side and having only access to very sparse data from downhole, the drilling process is poorly observed therefore making it difficult to use standard control methods. Therefore, to achieve completely autonomous drilling operations, it is necessary to utilize a method that is capable of estimating the internal state of the drilling system from parsimonious information while being able to make decisions that will keep the operation safe but effective. A solution enabling autonomous decision-making while drilling has been developed. It relies on an optimization of the time to reach the section total depth (TD). The estimated time to reach the section TD is decomposed into the effective time spent in conducting the drilling operation and the likely time lost to solve unexpected drilling events. This optimization problem is solved by using a Markov decision process method. Several example scenarios have been run in a virtual rig environment to test the validity of the concept. It is found that the system is capable to adapt itself to various drilling conditions, as for example being aggressive when the operation runs smoothly and the estimated uncertainty of the internal states is low, but also more cautious when the downhole drilling conditions deteriorate or when observations tend to indicate more erratic behavior, which is often observed prior to a drilling event.


Author(s):  
Jialin Tian ◽  
Jie Wang ◽  
Siqi Zhou ◽  
Yinglin Yang ◽  
Liming Dai

Excessive stick–slip vibration of drill strings can cause inefficiency and unsafety of drilling operations. To suppress the stick–slip vibration that occurred during the downhole drilling process, a drill string torsional vibration system considering the torsional vibration tool has been proposed on the basis of the 4-degree of freedom lumped-parameter model. In the design of the model, the tool is approximated by a simple torsional pendulum that brings impact torque to the drill bit. Furthermore, two sliding mode controllers, U1 and U2, are used to suppress stick–slip vibrations while enabling the drill bit to track the desired angular velocity. Aiming at parameter uncertainty and system instability in the drilling operations, a parameter adaptation law is added to the sliding mode controller U2. Finally, the suppression effects of stick–slip and robustness of parametric uncertainty about the two proposed controllers are demonstrated and compared by simulation and field test results. This paper provides a reference for the suppression of stick–slip vibration and the further study of the complex dynamics of the drill string.


Sign in / Sign up

Export Citation Format

Share Document