scholarly journals A new method for correcting temperature log profiles in low-enthalpy plays

2020 ◽  
Vol 8 (1) ◽  
Author(s):  
Sandra Schumacher ◽  
Inga Moeck

Abstract Temperature logs recorded shortly after drilling operations can be the only temperature information from deep wells. However, these measurements are still influenced by the thermal disturbance caused by drilling and therefore do not represent true rock temperatures. The magnitude of the thermal disturbance is dependent on many factors such as drilling time, logging procedure or mud temperature. However, often old well reports lack this crucial information so that conventional corrections on temperature logs cannot be performed. This impedes the re-evaluation of well data for new exploration purposes, e.g. for geothermal resources. This study presents a new method to correct log temperatures in low-enthalpy play types which only requires a knowledge of the final depth of the well as an input parameter. The method was developed and verified using existing well data from an intracratonic sedimentary basin, the eastern part of the North German Basin. It can be transferred to other basins with little or no adjustment.

2018 ◽  
Vol 156 (07) ◽  
pp. 1265-1284
Author(s):  
EVA VAN DER VOET ◽  
LEONORA HEIJNEN ◽  
JOHN J. G. REIJMER

AbstractIn contrast to the Norwegian and Danish sectors, where significant hydrocarbon reserves were found in chalk reservoirs, limited studies exist analysing the chalk evolution in the Dutch part of the North Sea. To provide a better understanding of this evolution, a tectono-sedimentary study of the Late Cretaceous to Early Palaeogene Chalk Group in the northern Dutch North Sea was performed, facilitated by a relatively new 3D seismic survey. Integrating seismic and biostratigraphic well data, seven chronostratigraphic units were mapped, allowing a reconstruction of intra-chalk geological events.The southwestward thickening of the Turonian sequence is interpreted to result from tilting, and the absence of Coniacian and Santonian sediments in the western part of the study area is probably the result of non-deposition. Seismic truncations show evidence of a widespread inversion phase, the timing of which differs between the structural elements. It started at the end of the Campanian followed by a second pulse during the Maastrichtian, a new finding not reported before. After subsidence during the Maastrichtian and Danian, renewed inversion and erosion occurred at the end of the Danian. Halokinesis processes resulted in thickness variations of chalk units of different ages.In summary, variations in sedimentation patterns in the northern Dutch North Sea relate to the Sub-Hercynian inversion phase during the Campanian and Maastrichtian, the Laramide inversion phase at the end of the Danian, and halokinesis processes. Additionally, the Late Cretaceous sea floor was characterized by erosion through contour bottom currents at different scales and resedimentation by slope failures.


2021 ◽  
Author(s):  
Irfan Hanif ◽  
Bramarandhito Sayogyo ◽  
R Riko ◽  
Praja Hadistira ◽  
Karina Sari

Abstract Tunu is a mature giant gas and condensate field locate in Mahakam Delta, East Kalimantan, Indonesia. The field has been in development for almost 30 years and currently has been considered as a mature field where to put a state of an economic well has become more challenging nowadays. The deeper zone of Tunu has no longer been considered as profitable to be produced and the current focus is more on the widespread shallow gas pocket located in the much shallower zone of Tunu. One phase well is architecture without 9-5/8" surface casing. OPW is one-section drilling using a diverter mode from surface to TD without using BOP. Historical for OPW is began from 2018, where drilling reservoir section using diverter mode in two-phase. In 2018 also succeeded in performing perforated surface casing. Due successfully in drilling operation using diverter and perforated surface casing, in 2019 drilling trials for OPW were carried out. Until now, the OPW architecture has become one of the common architecture used in drilling operations as an optimization effort. Until December 2020 PHM has completed 15+ OPW wells. A general comparison of OPW and SLA well is at the cost of constructing a well of approximately 200,000 - 300,000 US$. The disadvantages of OPW wells are more expensive in the mud and cement section when using a 9-1/2" hole, but in terms of the duration, OPW drilling time is more efficient up to 2-3 days. If viewed from the integrity of the OPW wells, from 15 OPW wells that have been completed, only 2 of them have SCP.


2019 ◽  
Vol 7 (4) ◽  
pp. SH19-SH31
Author(s):  
Gabriela Salomão Martins ◽  
Webster Ueipass Mohriak ◽  
Nivaldo Destro

The Sergipe-Alagoas Basin, situated in the north-east Brazilian margin, has a long tradition of oil and gas production and the presence and distribution of evaporites play an important role in petroleum systems in the basin. However, little research has focused on the structural evolution of the older, synrift evaporitic sections of the basin. We have focused explicitly in the detailed subsurface structural characterization of the rift in the Alagoas subbasin and the distribution of the Early Aptian evaporites. To accomplish this objective, we interpreted selected 2D and 3D seismic and well data located in two areas known as the Varela Low (VL) and Fazenda Guindaste Low (FGL). We identified diverse deformation styles in those two basin depocenters. Our interpretation indicates that VL consists of a half-graben with a significant rollover structure, controlled by two listric northeast–southwest border faults. The deformation in the hanging wall is also accommodated by release faults and minor antithetic faults. In this depocenter, we mapped in the seismic and the well data an older evaporitic sequence within the Coqueiro Seco Fm., known as Horizonte Salt. This evaporitic section occurs in the internal part of the VL half graben, where it is limited by release and antithetic faults. Significant salt strata growing toward the antithetic fault is observed. Whereas, the FGL represents a graben elongated along the north-east direction and is controlled by several types of structures. We recognized normal synthetic and antithetic faults, transfer zones, release faults, and rollover anticlines in the seismic throughout this depocenter. We mapped an evaporitic section within the Maceió Fm., known as Paripueira Salt, which consists of disconnected salt bodies, restricted to the hanging walls of synrift faults.


2019 ◽  
Vol 125 ◽  
pp. 15001
Author(s):  
Benny Abraham Bungasalu ◽  
M. Syamsu Rosid ◽  
Don S. Basuki

The subsurface pressure analysis is used to detect the overpressure and problems in the well that will be drilled based on exploration well data. Various problems were found while drilling operations carried out on A and B wells, namely, Kick and Pipe sticking which cause a high Non-Productive Time (NPT). This research is conducted to identify the mechanism of overpressure formation in Tight Sand Gas and Shale Gas in the Jambi Sub-Basin. Furthermore, to predict pore pressure using the Drilling Efficiency and Mechanical Specific Energy (DEMSE) and Bowers method. The final result will be a 3D pore pressure cube in the area based on quantitative analysis of post-stack seismic inversion. The results of the pore pressure analysis from the wells and the 3D pore pressure model indicate that top of overpressure occurs in the Gumai Formation, then it is decreasing gradually approaching the hydrostatic pressure on the Basement. The mechanisms of overpressure are caused by under compaction, fluid expansion (kerogen maturation). The Gumai Formation and Talang Akar Formation are shale rocks so the type of mud weight that is well used is oil based mud (OBM).


2020 ◽  
Vol 39 (8) ◽  
pp. 543-550
Author(s):  
Roberto Fainstein ◽  
Juvêncio De Deus Correia do Rosário ◽  
Helio Casimiro Guterres ◽  
Rui Pena dos Reis ◽  
Luis Teófilo da Costa

Regional geophysics research provides for prospect assessment of Timor-Leste, part of the Southeast Asia Archipelago in a region embracing the Banda Arc, Timor Island, and the northwest Australia Gondwana continental margin edge. Timor Island is a microcontinent with several distinct tectonic provinces that developed initially by rifting and drifting away from the Australian Plate. A compressive convergence began in the Miocene whereby the continental edge of the large craton collided with the microcontinent, forming a subduction zone under the island. The bulk of Timor Island consists of a complex mélange of Tertiary, Cretaceous, Jurassic, Triassic, Permian, and volcanic features over a basal Gondwana craton. Toward the north, the offshore consists of a Tertiary minibasin facing the Banda Arc Archipelago, with volcanics interspersed onshore with the basal Gondwana pre-Permian. A prominent central overthrust nappe of Jurassic and younger layers makes up the mountains of Timor-Leste, terminating south against an accretionary wedge formed by this ongoing collision of Timor and Australia. The northern coast of the island is part of the Indonesian back arc, whereas the southern littoral onshore plus shallow waters are part of the accretionary prism. Deepwater provinces embrace the Timor Trough and the slope of the Australian continental margin being the most prospective region of Timor-Leste. Overall crust and mantle tectonic structuring of Timor-Leste is interpreted from seismic and potential field data, focusing mostly on its southern offshore geology where hydrocarbon prospectivity has been established with interpretation of regional seismic data and analyses of gravity, magnetic, and earthquake data. Well data tied to seismic provides focal points for stratigraphic correlation. Although all the known producing hydrocarbon reservoirs of the offshore are Jurassic sands, interpretation of Permian and Triassic stratigraphy provides knowledge for future prospect drilling risk assessment, both onshore and offshore.


It has been thought for some time that an examination of the relation between the phases of the horizontal and vertical displacements in microseisms would be of interest in showing how closely the oscillations compare with Rayleigh waves, but a practicable scheme for making the observations has only recently been developed. In the earlier attempts the turning points of consecutive oscillations were times during several minutes, but the accuracy attained by interpolation between the minute breaks was not high enough for reliable comparisons between the components. A solution of this difficulty has now been found in a modification of the method adopted by Leet, who has examined the relation between the horizontal and vertical phases of the microseisms recorded at Harvard Observatory, using comparisons of the movements exactly at the minute breaks . The application of this new method to the seisograms of Kew Observatory is described in the present paper. 2—Tabulation of the phases of the microseisms Fig. 1 shows portions of the records, obtained from the Galitzin seismographs at Kew on January 11, 1930, when the microseisms were very large. Upward movements on the seismograms correspond with ground movements to the north, to the east, and upwards. The direction of recording is from right to left.


1965 ◽  
Vol 30 (4) ◽  
pp. 442-453 ◽  
Author(s):  
William J. Robinson ◽  
Roderick Sprague

AbstractThe analysis of 975 burials indicates that the inhumations of the Point of Pines region conformed to the flexed Mogollon pattern prior to A.D. 1000. Subsequently, extended burials appeared concurrently with a complex of traits diffused from areas to the north. At the same time, cremation became established as a part of the mortuary complex as a result of contact with Hohokam peoples to the south. Additional evidence of this contact consists of Hohokam material culture items and a ball court. Ceremonial killing of the crematory vessels was extensively practiced and included a new method, notch-killing. The variability of forms and methods of disposal suggests rapidly changing patterns and alternatives in burial practices.


2020 ◽  
Author(s):  
Benjamin Bellwald ◽  
Sverre Planke ◽  
Sunil Vadakkepuliyambatta ◽  
Stefan Buenz ◽  
Christine Batchelor ◽  
...  

<p>Sediments deposited by marine-based ice sheets are dominantly fine-grained glacial muds, which are commonly known for their sealing properties for migrating fluids. However, the Peon and Aviat hydrocarbon discoveries in the North Sea show that coarse-grained glacial sands can occur over large areas in formerly glaciated continental shelves. In this study, we use conventional and high-resolution 2D and 3D seismic data combined with well information to present new models for large-scale fluid accumulations within the shallow subsurface of the Norwegian Continental Shelf. The data include 48,000 km<sup>2</sup> of high-quality 3D seismic data and 150 km<sup>2</sup> of high-resolution P-Cable 3D seismic data, with a vertical resolution of 2 m and a horizontal resolution of 6 to 10 m in these data sets. We conducted horizon picking, gridding and attribute extractions as well as seismic geomorphological interpretation, and integrated the results obtained from the seismic interpretation with existing well data.</p><p>The thicknesses of the Quaternary deposits vary from hundreds of meters of subglacial till in the Northern North Sea to several kilometers of glacigenic sediments in the North Sea Fan. Gas-charged, sandy accumulations are characterized by phase-reserved reflections with anomalously high amplitudes in the seismic data as well as density and velocity decreases in the well data. Extensive (>10 km<sup>2</sup>) Quaternary sand accumulations within this package include (i) glacial sands in an ice-marginal outwash fan, sealed by stiff glacial tills deposited by repeated glaciations (the Peon discovery in the Northern North Sea), (ii) sandy channel-levee systems sealed by fine-grained mud within sequences of glacigenic debris flows, formed during shelf-edge glaciations, (iii) fine-grained glacimarine sands of contouritic origin sealed by gas hydrates, and (iv) remobilized oozes above large evacuation craters and sealed by megaslides and glacial muds. The development of the Fennoscandian Ice Sheet resulted in a rich variety of depositional environments with frequently changing types and patterns of glacial sedimentation. Extensive new 3D seismic data sets are crucial to correctly interpret glacial processes and to analyze the grain sizes of the related deposits. Furthermore, these data sets allow the identification of localized extensive fluid accumulations within the Quaternary succession and distinguish stratigraphic levels favorable for fluid accumulations from layers acting as fluid barriers.</p>


Geophysics ◽  
2010 ◽  
Vol 75 (6) ◽  
pp. O57-O67 ◽  
Author(s):  
Daria Tetyukhina ◽  
Lucas J. van Vliet ◽  
Stefan M. Luthi ◽  
Kees Wapenaar

Fluvio-deltaic sedimentary systems are of great interest for explorationists because they can form prolific hydrocarbon plays. However, they are also among the most complex and heterogeneous ones encountered in the subsurface, and potential reservoir units are often close to or below seismic resolution. For seismic inversion, it is therefore important to integrate the seismic data with higher resolution constraints obtained from well logs, whereby not only the acoustic properties are used but also the detailed layering characteristics. We have applied two inversion approaches for poststack, time-migrated seismic data to a clinoform sequence in the North Sea. Both methods are recursive trace-based techniques that use well data as a priori constraints but differ in the way they incorporate structural information. One method uses a discrete layer model from the well that is propagated laterally along the clinoform layers, which are modeled as sigmoids. The second method uses a constant sampling rate from the well data and uses horizontal and vertical regularization parameters for lateral propagation. The first method has a low level of parameterization embedded in a geologic framework and is computationally fast. The second method has a much higher degree of parameterization but is flexible enough to detect deviations in the geologic settings of the reservoir; however, there is no explicit geologic significance and the method is computationally much less efficient. Forward seismic modeling of the two inversion results indicates a good match of both methods with the actual seismic data.


Sign in / Sign up

Export Citation Format

Share Document