Polymer morphology and gas transport properties in relation to their chemical structure

2017 ◽  
Vol 72 (3) ◽  
pp. 120-127 ◽  
Author(s):  
S. V. Kryuchkova ◽  
M. Yu. Yablokova ◽  
A. Yu. Alentiev ◽  
L. G. Gasanova ◽  
A. V. Kepman
Polymer ◽  
2018 ◽  
Vol 135 ◽  
pp. 76-84 ◽  
Author(s):  
Ali Naderi ◽  
Wai Fen Yong ◽  
Youchang Xiao ◽  
Tai-Shung Chung ◽  
Martin Weber ◽  
...  

2017 ◽  
Vol 30 (7) ◽  
pp. 821-832 ◽  
Author(s):  
Tengyang Zhu ◽  
Xing Yang ◽  
Xiaoqi He ◽  
Yayun Zheng ◽  
Jujie Luo

A series of new aromatic polyamides (PAs) and copolyamides (CPAs) containing fluorene group have been synthesized through polycondensation reaction. The chemical structure was confirmed by Fourier transform infrared and proton nuclear magnetic resonance (1H NMR). PAs and CPAs exhibited the higher thermal stability ( Td15 > 378°C in nitrogen), the higher glass transition temperature ( Tg > 345°C), and excellent solubility in polar solvent. Gas transport properties of the PA and CPA membranes were investigated using different single gases (hydrogen (H2), carbon dioxide (CO2), oxygen (O2), methane (CH4), and nitrogen (N2)). We discussed the effect of chemical structure and operating temperature on gas transport properties. The results show that PA-1 containing a hexafluoroisopropylidene moiety exhibited the highest gas permeability ( PH2 = 12.71 Barrer, PCO2 = 12.26 Barrer, and PO2 = 2.62 Barrer) and reasonably good selectivity ( α(H2/N2) = 27.63, α(CO2/N2) = 26.65, and α(O2/N2) = 5.70) at 25°C and 1 atm. For all the membranes, gas permeability gradually increased with the increase in operating temperature, while the selectivity gradually decreased. These gas permeation results were well correlated with fractional free volume, interchain d-spacing ( dsp), and intermolecular interaction.


2002 ◽  
Vol 752 ◽  
Author(s):  
Xinglong Xu ◽  
Ling Hu ◽  
Maria Coleman

ABSTRACTMatrimid® is a widely used polyimide that has both attractive thermal and gas transport properties. In addition, it has been used as a precursor polymer for production of carbon molecular sieving membranes with commercially interesting gas separations. Ion beam irradiation over a wide range of doses was used to modify a series of Matrimid® membranes. A combined analysis of impact of ion irradiation on the chemical structure, microstructure and gas transport properties of Matrimid® will be presented. Specifically, the evolution in gas permeation properties following irradiation over a wide range of doses will be discussed. Ion irradiation resulted in combined increased permeability and permselectivity for several gas pairs of interest.


2020 ◽  
Vol 2 (6) ◽  
pp. 399-406
Author(s):  
E. A. Grushevenko ◽  
I. L. Borisov ◽  
D. S. Bakhtin ◽  
V. V. Volkov ◽  
A. V. Volkov

2019 ◽  
Vol 217 ◽  
pp. 183-194 ◽  
Author(s):  
N. Belov ◽  
R. Chatterjee ◽  
R. Nikiforov ◽  
V. Ryzhikh ◽  
S. Bisoi ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2199
Author(s):  
Khadija Asif ◽  
Serene Sow Mun Lock ◽  
Syed Ali Ammar Taqvi ◽  
Norwahyu Jusoh ◽  
Chung Loong Yiin ◽  
...  

Polysulfone-based mixed matrix membranes (MMMs) incorporated with silica nanoparticles are a new generation material under ongoing research and development for gas separation. However, the attributes of a better-performing MMM cannot be precisely studied under experimental conditions. Thus, it requires an atomistic scale study to elucidate the separation performance of silica/polysulfone MMMs. As most of the research work and empirical models for gas transport properties have been limited to pure gas, a computational framework for molecular simulation is required to study the mixed gas transport properties in silica/polysulfone MMMs to reflect real membrane separation. In this work, Monte Carlo (MC) and molecular dynamics (MD) simulations were employed to study the solubility and diffusivity of CO2/CH4 with varying gas concentrations (i.e., 30% CO2/CH4, 50% CO2/CH4, and 70% CO2/CH4) and silica content (i.e., 15–30 wt.%). The accuracy of the simulated structures was validated with published literature, followed by the study of the gas transport properties at 308.15 K and 1 atm. Simulation results concluded an increase in the free volume with an increasing weight percentage of silica. It was also found that pure gas consistently exhibited higher gas transport properties when compared to mixed gas conditions. The results also showed a competitive gas transport performance for mixed gases, which is more apparent when CO2 increases. In this context, an increment in the permeation was observed for mixed gas with increasing gas concentrations (i.e., 70% CO2/CH4 > 50% CO2/CH4 > 30% CO2/CH4). The diffusivity, solubility, and permeability of the mixed gases were consistently increasing until 25 wt.%, followed by a decrease for 30 wt.% of silica. An empirical model based on a parallel resistance approach was developed by incorporating mathematical formulations for solubility and permeability. The model results were compared with simulation results to quantify the effect of mixed gas transport, which showed an 18% and 15% percentage error for the permeability and solubility, respectively, in comparison to the simulation data. This study provides a basis for future understanding of MMMs using molecular simulations and modeling techniques for mixed gas conditions that demonstrate real membrane separation.


1992 ◽  
Vol 25 (2) ◽  
pp. 788-796 ◽  
Author(s):  
D. H. Weinkauf ◽  
H. D. Kim ◽  
D. R. Paul

Sign in / Sign up

Export Citation Format

Share Document