Gauge Fields in the Theory of Condensed Matter and Helicity Conservation

2020 ◽  
Vol 75 (2) ◽  
pp. 103-108
Author(s):  
M. Iv. Trukhanova
1998 ◽  
Vol 12 (16n17) ◽  
pp. 1673-1692 ◽  
Author(s):  
Peter Kopietz

We calculate the self-energy of two-dimensional fermions that are coupled to transverse gauge fields, taking two-loop corrections into account. Given a bare gauge field propagator that diverges for small momentum transfers q as 1/qη, 1<η≤ 2, the fermionic self-energy without vertex corrections vanishes for small frequencies ω as Σ(ω)∝ ωγ with γ=2/(1+η)<1. We show that inclusion of the leading radiative correction to the fermion-gauge field vertex leads to Σ(ω)∝ωγ [1-aη ln (ω0/ω)], where aη is a positive numerical constant and ω0 is some finite energy scale. The negative logarithmic correction is consistent with the scenario that higher order vertex corrections push the exponent γ to larger values.


SPIN ◽  
2020 ◽  
Vol 10 (03) ◽  
pp. 2050018
Author(s):  
Seng Ghee Tan ◽  
Mansoor B. A. Jalil ◽  
Ching-Ray Chang ◽  
Shuichi Murakami

We review the formulation of gauge fields in terms of the frame of reference as well as the space in which the frame is defined. We highlighted some recent applications of gauge physics in the momentum space — in the modern fields of the spin Hall effect, the magnon Hall, the optical Magnus and the graphene valley Hall. General procedures of gauge transformation which lead to the construction of the gauge curvature and the equations of motion (EOM) are outlined. Central to this review is our intention to illustrate the impact of gauge physics on the past and future development of many new research fields emerging out of condensed matter physics, particularly in quantum nanosciences and nanoelectronics.


Author(s):  
Aron Beekman ◽  
Louk Rademaker ◽  
Jasper van Wezel

Perhaps the most important aspect of symmetry in physics is the idea that a state does not need to have the same symmetries as the theory that describes it. This phenomenon is known as spontaneous symmetry breaking. In these lecture notes, starting from a careful definition of symmetry in physics, we introduce symmetry breaking and its consequences. Emphasis is placed on the physics of singular limits, showing the reality of symmetry breaking even in small-sized systems. Topics covered include Nambu-Goldstone modes, quantum corrections, phase transitions, topological defects and gauge fields. We provide many examples from both high energy and condensed matter physics. These notes are suitable for graduate students.


Author(s):  
R. H. Ritchie ◽  
A. Howie

An important part of condensed matter physics in recent years has involved detailed study of inelastic interactions between swift electrons and condensed matter surfaces. Here we will review some aspects of such interactions.Surface excitations have long been recognized as dominant in determining the exchange-correlation energy of charged particles outside the surface. Properties of surface and bulk polaritons, plasmons and optical phonons in plane-bounded and spherical systems will be discussed from the viewpoint of semiclassical and quantal dielectric theory. Plasmons at interfaces between dissimilar dielectrics and in superlattice configurations will also be considered.


Sign in / Sign up

Export Citation Format

Share Document