A General Harmonic Solution in Dilaton Electrodynamics: An Exact Expression for the Fields and the Generalized Lorentz Force

2020 ◽  
Vol 75 (5) ◽  
pp. 427-433
Author(s):  
O. V. Kechkin ◽  
P. A. Mosharev
2009 ◽  
Vol 129 (6) ◽  
pp. 831-839
Author(s):  
Keisuke Udagawa ◽  
Sadatake Tomioka ◽  
Hiroyuki Yamasaki

2008 ◽  
Vol 44 (3) ◽  
pp. 205-222 ◽  
Author(s):  
T. Albrecht ◽  
H. Metzkes ◽  
R. Grundmann ◽  
G. Mutschke ◽  
G. Gerbeth

2009 ◽  
Vol 45 (4) ◽  
pp. 569-578 ◽  
Author(s):  
V. Minchenya ◽  
◽  
Ch. Karcher ◽  
Yu. Kolesnikov ◽  
A. Thess ◽  
...  
Keyword(s):  

2017 ◽  
Vol 53 (2) ◽  
pp. 245-254 ◽  
Author(s):  
D. Musaeva ◽  
E. Baake ◽  
V. Ilin ◽  
G. Jarczyk

Author(s):  
Niels Engholm Henriksen ◽  
Flemming Yssing Hansen

This chapter discusses a direct approach to the calculation of the rate constant k(T) that bypasses the detailed state-to-state reaction cross-sections. The method is based on the calculation of the reactive flux across a dividing surface on the potential energy surface. Versions based on classical as well as quantum mechanics are described. The classical version and its relation to Wigner’s variational theorem and recrossings of the dividing surface is discussed. Neglecting recrossings, an approximate result based on the calculation of the classical one-way flux from reactants to products is considered. Recrossings can subsequently be included via a transmission coefficient. An alternative exact expression is formulated based on a canonical average of the flux time-correlation function. It concludes with the quantum mechanical definition of the flux operator and the derivation of a relation between the rate constant and a flux correlation function.


2021 ◽  
Vol 33 (1) ◽  
pp. 79-90 ◽  
Author(s):  
Amjad Ali ◽  
Attia Fatima ◽  
Zainab Bukhari ◽  
Hamayun Farooq ◽  
Zaheer Abbas

Optik ◽  
2021 ◽  
pp. 167302
Author(s):  
Talat Körpınar ◽  
Rıdvan Cem Demirkol ◽  
Zeliha Körpınar

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Hongyu Guo ◽  
Jun Li

AbstractOn single-cell RNA-sequencing data, we consider the problem of assigning cells to known cell types, assuming that the identities of cell-type-specific marker genes are given but their exact expression levels are unavailable, that is, without using a reference dataset. Based on an observation that the expected over-expression of marker genes is often absent in a nonnegligible proportion of cells, we develop a method called scSorter. scSorter allows marker genes to express at a low level and borrows information from the expression of non-marker genes. On both simulated and real data, scSorter shows much higher power compared to existing methods.


Sign in / Sign up

Export Citation Format

Share Document