Light-emitting properties of GaAs/InGaAs quantum wells with a GaAs barrier δ-doped with Mn atoms

2009 ◽  
Vol 73 (1) ◽  
pp. 11-14
Author(s):  
O. V. Vikhrova ◽  
Yu. A. Danilov ◽  
P. B. Demina ◽  
M. V. Dorokhin ◽  
B. N. Zvonkov ◽  
...  
2021 ◽  
Vol 118 (18) ◽  
pp. 182102
Author(s):  
Xiaoyu Zhao ◽  
Bin Tang ◽  
Liyan Gong ◽  
Junchun Bai ◽  
Jiafeng Ping ◽  
...  

2008 ◽  
Vol 1 ◽  
pp. 021101 ◽  
Author(s):  
Lai Wang ◽  
Jiaxing Wang ◽  
Hongtao Li ◽  
Guangyi Xi ◽  
Yang Jiang ◽  
...  

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Mohd Ann Amirul Zulffiqal Md Sahar ◽  
Zainuriah Hassan ◽  
Sha Shiong Ng ◽  
Way Foong Lim ◽  
Khai Shenn Lau ◽  
...  

Purpose The aims of this paper is to study the effects of the V/III ratio of indium gallium nitride (InGaN) quantum wells (QWs) on the structural, optical and electrical properties of near-ultraviolet light-emitting diode (NUV-LED). Design/methodology/approach InGaN-based NUV-LED is successfully grown on the c-plane patterned sapphire substrate at atmospheric pressure using metal organic chemical vapor deposition. Findings The indium composition and thickness of InGaN QWs increased as the V/III ratio increased from 20871 to 11824, according to high-resolution X-ray diffraction. The V/III ratio was also found to have an important effect on the surface morphology of the InGaN QWs and thus the surface morphology of the subsequent layers. Apart from that, the electroluminescence measurement revealed that the V/III ratio had a major impact on the light output power (LOP) and the emission peak wavelength of the NUV-LED. The LOP increased by up to 53% at 100 mA, and the emission peak wavelength of the NUV-LED changed to a longer wavelength as the V/III ratio decreased from 20871 to 11824. Originality/value This study discovered a relation between the V/III ratio and the properties of QWs, which resulted in the LOP enhancement of the NUV-LED. High TMIn flow rates, which produced a low V/III ratio, contribute to the increased LOP of NUV-LED.


Sign in / Sign up

Export Citation Format

Share Document