Improving the accuracy of cosmic ray mass composition estimation using the scale factor of the electron lateral distribution in air showers

2017 ◽  
Vol 81 (4) ◽  
pp. 450-452 ◽  
Author(s):  
R. I. Raikin ◽  
T. L. Serebryakova ◽  
A. A. Lagutin ◽  
N. V. Volkov
2019 ◽  
Vol 210 ◽  
pp. 02012
Author(s):  
R. Takeishi

One of the uncertainties in ultrahigh energy cosmic ray (UHECR) observation derives from the hadronic interaction model used for air shower Monte-Carlo (MC) simulations. One may test the hadronic interaction models by comparing the measured number of muons observed at the ground from UHECR induced air showers with the MC prediction. The Telescope Array (TA) is the largest experiment in the northern hemisphere observing UHECR in Utah, USA. It aims to reveal the origin of UHECRs by studying the energy spectrum, mass composition and anisotropy of cosmic rays by utilizing an array of surface detectors (SDs) and fluorescence detectors. We studied muon densities in the UHE extensive air showers by analyzing the signal of TA SD stations for highly inclined showers. On condition that the muons contribute about 65% of the total signal, the number of particles from air showers is typically 1.88 ± 0.08 (stat.) ± 0.42 (syst.) times larger than the MC prediction with the QGSJET II-03 model for proton-induced showers. The same feature was also obtained for other hadronic interaction models, such as QGSJET II-04.


2019 ◽  
Vol 216 ◽  
pp. 02004 ◽  
Author(s):  
Fabrizia Canfora

The mass composition of ultra-high-energy cosmic rays plays a key role in the understanding of the origins ofthese rare particles. A composition-sensitive observable is the atmospheric depth at which the air shower reaches the maximum number of particles (Xmax). The Auger Engineering Radio Array (AERA) detects the radio emission inthe 30-80 MHz frequency band from extensive air showers with energies larger than 1017 eV. It consists of more than 150 autonomous radio stations covering an area of about 17 km2. From the distribution of signals measured by the antennas, it is possible to estimate Xmax. In this contribution three independent methods for the estimation of Xmax will be presented.


2015 ◽  
Vol 754-755 ◽  
pp. 807-811
Author(s):  
A.A. Al-Rubaiee ◽  
Uda Hashim ◽  
Mohd Khairuddin Md Arshad ◽  
A. Rahim Ruslinda ◽  
R.M. Ayub ◽  
...  

The simulation of Cherenkov light Lateral distribution function (LDF) in Extensive Air Showers (EAS) initiated primary particles such as primary calcium, argon, proton iron nuclei, neutron and nitrogen have been performed using CORSIKA program for conditions and configurations of Tunka133 EAS Cherenkov array. The simulation was fulfilled at the high energy range 1014-1016eV for four different zenith angles 0o, 10o, 15oand 30o. The results of the simulated Cherenkov light LDF are compared with the measurements of Tunka133 EAS array for the same particles and energy range mentioned above. This comparison may give the good ability to reconstruct the energy spectrum and mass composition of the primary cosmic ray particles in EAS. The main feature of the given approach consists of the possibility to make a library of Cherenkov light LDF samples which could be utilized for analysis of real events which can be detected with different EAS arrays and reconstruction of the primary cosmic rays energy spectrum and mass composition of EAS particles.


Author(s):  
Marwah M. Abdulsttar ◽  
A.A. Al-Rubaiee ◽  
Abdul Halim K. Ali

Cherenkov light lateral distribution function (CLLDF) in Extensive Air Showers (EAS) for different primary particles (e-, n , p, F, K and Fe) was simulated using CORSIKA code for conditions and configurations of Yakutsk EAS array with the fixed primary energy 3 PeV around the knee region at different zenith angles. Basing on the results of CLLDF numerical simulation, sets of approximated functions are reconstructed for different primary particles as a function of the zenith angle. A comparison of the parametrized CLLDF with that simulated with Yakutsk EAS array is verified.The parameterized CLLDF also is compared with that measured on the Yakutsk EAS array.


1999 ◽  
Vol 16 (8) ◽  
pp. 622-624
Author(s):  
Min Zha ◽  
Tsang Chueng ◽  
Lin-kai Ding ◽  
Xiao-yu Gao ◽  
Qing-xi Geng ◽  
...  

2012 ◽  
Vol 27 (39) ◽  
pp. 1230038 ◽  
Author(s):  
ALESSIO TAMBURRO

The IceCube Observatory at the South Pole is composed of a cubic kilometer scale neutrino telescope buried beneath the icecap and a square-kilometer surface water Cherenkov tank detector array known as IceTop. The combination of the surface array with the in-ice detector allows the dominantly electromagnetic signal of air showers at the surface and their high-energy muon signal in the ice to be measured in coincidence. This ratio is known to carry information about the nuclear composition of the primary cosmic rays. This paper reviews the recent results from cosmic-ray measurements performed with IceTop/IceCube: energy spectrum, mass composition, anisotropy, search for PeV γ sources, detection of high energy muons to probe the initial stages of the air shower development, and study of transient events using IceTop in scaler mode.


2015 ◽  
pp. 79-85
Author(s):  
A. Al-Rubaiee ◽  
U. Hashim ◽  
M. Marwah ◽  
Y. Al-Douri

The Cherenkov light lateral distribution function (LDF) was simulated with the CORSIKAcode in the energy range (1013 - 1016) eV. This simulation was performed for conditions and configurations of the Tunka EAS Cherenkov array for the two primary particles (p and Fe). Basing on the simulated results, many approximated functions are structured for two primary particles and different zenith angles. This allowed us to reconstruct the EAS events, which is, to determine the type and energy of the primary particles that produced showers from signal amplitudes of Cherenkov radiation measured by the Tunka Cherenkov array experiment. Comparison of the calculated LDF of Cherenkov radiation with that measured at the Tunka EAS array shows the ability to identify the primary particle that initiated the EAS cascades by determining its primary energy around the knee region of the cosmic ray spectrum.


1990 ◽  
Vol 68 (1) ◽  
pp. 41-48 ◽  
Author(s):  
D. K. Basak ◽  
S. K. Sarkar ◽  
N. Mukherjee ◽  
S. Sanyal ◽  
B. Ghosh ◽  
...  

The energy spectra and the lateral distribution of muons in cosmic-ray air showers, in the size range 104–106 particles as measured by two magnetic spectrographs each of full detection efficiency for muons in the energy range 2.5–500 GeV, are presented along with the derived muon size vs. shower size results. Comparisons with similar recent experimental data and calculations are given to infer the cosmic-ray primary composition.


Sign in / Sign up

Export Citation Format

Share Document