scholarly journals MEASUREMENTS OF COSMIC RAYS WITH ICETOP/ICECUBE: STATUS AND RESULTS

2012 ◽  
Vol 27 (39) ◽  
pp. 1230038 ◽  
Author(s):  
ALESSIO TAMBURRO

The IceCube Observatory at the South Pole is composed of a cubic kilometer scale neutrino telescope buried beneath the icecap and a square-kilometer surface water Cherenkov tank detector array known as IceTop. The combination of the surface array with the in-ice detector allows the dominantly electromagnetic signal of air showers at the surface and their high-energy muon signal in the ice to be measured in coincidence. This ratio is known to carry information about the nuclear composition of the primary cosmic rays. This paper reviews the recent results from cosmic-ray measurements performed with IceTop/IceCube: energy spectrum, mass composition, anisotropy, search for PeV γ sources, detection of high energy muons to probe the initial stages of the air shower development, and study of transient events using IceTop in scaler mode.

2019 ◽  
Vol 216 ◽  
pp. 02004 ◽  
Author(s):  
Fabrizia Canfora

The mass composition of ultra-high-energy cosmic rays plays a key role in the understanding of the origins ofthese rare particles. A composition-sensitive observable is the atmospheric depth at which the air shower reaches the maximum number of particles (Xmax). The Auger Engineering Radio Array (AERA) detects the radio emission inthe 30-80 MHz frequency band from extensive air showers with energies larger than 1017 eV. It consists of more than 150 autonomous radio stations covering an area of about 17 km2. From the distribution of signals measured by the antennas, it is possible to estimate Xmax. In this contribution three independent methods for the estimation of Xmax will be presented.


2006 ◽  
Vol 21 (supp01) ◽  
pp. 192-196 ◽  
Author(s):  
D. ARDOUIN ◽  
A. BELLETOILE ◽  
D. CHARRIER ◽  
R. DALLIER ◽  
L. DENIS ◽  
...  

The CODALEMA experimental device currently detects and characterizes the radio contribution of cosmic ray air showers : arrival directions and electric field topologies of radio transient signals associated to cosmic rays are extracted from the antenna signals. The measured rate, about 1 event per day, corresponds to an energy threshold around 5.1016eV. These results allow to determine the perspectives offered by the present experimental design for radiodetection of Ultra High Energy Cosmic Rays at a larger scale.


2018 ◽  
Vol 182 ◽  
pp. 02122
Author(s):  
Ryuji Takeishi

The origin of ultra-high energy cosmic rays (UHECRs) has been a longstanding mystery. The Telescope Array (TA) is the largest experiment in the northern hemisphere observing UHECR in Utah, USA. It aims to reveal the origin of UHECR by studying the energy spectrum, mass composition and anisotropy of cosmic rays. TA is a hybrid detector comprised of three air fluorescence stations which measure the fluorescence light induced from cosmic ray extensive air showers, and 507 surface scintillator counters which sample charged particles from air showers on the ground. We present the cosmic ray spectrum observed with the TA experiment. We also discuss our results from measurement of the mass composition. In addition, we present the results from the analysis of anisotropy, including the excess of observed events in a region of the northern sky at the highest energy. Finally, we introduce the TAx4 experiment which quadruples TA, and the TA low energy extension (TALE) experiment.


Computer simulations have been made of the average characteristics of extensive air showers initiated by primary protons in a wide range of energy. The simulations, which are perhaps unusual in the detailed information available for each shower, have been made as part of a design study for future experiments intended to identify the mass number of energetic primaries. The sensitivity of the data from our simulations to the detail of the adopted model for interactions has been investigated by incorporating the consequences of the results from recent accelerator and cosmic ray experiments. The simulations have been made by means of a variety of computational techniques; in most simulations a simple representation of the interaction of high-energy nucleons and pions has been employed which is characterized by accounting well for presently available experimental data on large air showers. We conclude that the treatment of showers, although derived with a simple model for interactions, may be usefully employed to study the fluctuations in air-shower development.


2017 ◽  
Vol 26 (14) ◽  
pp. 1750161
Author(s):  
Saeed Doostmohammadi

Lateral distribution function of extensive air showers of energetic cosmic rays, indicate how secondary particles spread over a surface detectors. There are many different universal formulas between lateral distribution parameters and shower age parameter which can be used to infer about maximum development of extensive air shower (which is a key parameter to estimate the mass composition of primary cosmic rays). At present work, an estimated percent of mass composition of ultra-high energy cosmic rays is investigated by comparison between Ivanov et al. modeling of simulated data, which has been done by CoRSiKa, and Yakutsk experimental data.


2019 ◽  
Vol 208 ◽  
pp. 08003 ◽  
Author(s):  
Raul R. Prado

The hybrid design of the Pierre Auger Observatory allows for the measurement of a number of properties of extensive air showers initiated by ultra-high energy cosmic rays. By comparing these measurements to predictions from air shower simulations, it is possible to both infer the cosmic ray mass composition and test hadronic interactions beyond the energies reached by accelerators. In this paper, we will present a compilation of results of air shower measurements by the Pierre Auger Observatory which are sensitive to the properties of hadronic interactions and can be used to constrain the hadronic interaction models. The inconsistencies found between the interpretation of different observables with regard to primary composition and between their measurements and simulations show that none of the currently used hadronic interaction models can provide a proper description of air showers and, in particular, of the muon production.


2019 ◽  
Vol 210 ◽  
pp. 02012
Author(s):  
R. Takeishi

One of the uncertainties in ultrahigh energy cosmic ray (UHECR) observation derives from the hadronic interaction model used for air shower Monte-Carlo (MC) simulations. One may test the hadronic interaction models by comparing the measured number of muons observed at the ground from UHECR induced air showers with the MC prediction. The Telescope Array (TA) is the largest experiment in the northern hemisphere observing UHECR in Utah, USA. It aims to reveal the origin of UHECRs by studying the energy spectrum, mass composition and anisotropy of cosmic rays by utilizing an array of surface detectors (SDs) and fluorescence detectors. We studied muon densities in the UHE extensive air showers by analyzing the signal of TA SD stations for highly inclined showers. On condition that the muons contribute about 65% of the total signal, the number of particles from air showers is typically 1.88 ± 0.08 (stat.) ± 0.42 (syst.) times larger than the MC prediction with the QGSJET II-03 model for proton-induced showers. The same feature was also obtained for other hadronic interaction models, such as QGSJET II-04.


Universe ◽  
2018 ◽  
Vol 4 (11) ◽  
pp. 128 ◽  
Author(s):  
Dariusz Góra ◽  

The Pierre Auger Observatory is the world’s largest operating detection system for the observation of ultra high energy cosmic rays (UHECRs), with energies above 10 17 eV. The detector allows detailed measurements of the energy spectrum, mass composition and arrival directions of primary cosmic rays in the energy range above 10 17 eV. The data collected at the Auger Observatory over the last decade show the suppression of the cosmic ray flux at energies above 4 × 10 19 eV. However, it is still unclear if this suppression is caused by the energy limitation of their sources or by the Greisen–Zatsepin–Kuzmin (GZK) cut-off. In such a case, UHECRs would interact with the microwave background (CMB), so that particles traveling long intergalactic distances could not have energies greater than 5 × 10 19 eV. The other puzzle is the origin of UHECRs. Some clues can be drawn from studying the distribution of their arrival directions. The recently observed dipole anisotropy has an orientation that indicates an extragalactic origin of UHECRs. The Auger surface detector array is also sensitive to showers due to ultra high energy neutrinos of all flavors and photons, and recent neutrino and photon limits provided by the Auger Observatory can constrain models of the cosmogenic neutrino production and exotic scenarios of the UHECRs origin, such as the decays of super heavy, non-standard-model particles. In this paper, the recent results on measurements of the energy spectrum, mass composition and arrival directions of cosmic rays, as well as future prospects are presented.


2015 ◽  
Vol 754-755 ◽  
pp. 807-811
Author(s):  
A.A. Al-Rubaiee ◽  
Uda Hashim ◽  
Mohd Khairuddin Md Arshad ◽  
A. Rahim Ruslinda ◽  
R.M. Ayub ◽  
...  

The simulation of Cherenkov light Lateral distribution function (LDF) in Extensive Air Showers (EAS) initiated primary particles such as primary calcium, argon, proton iron nuclei, neutron and nitrogen have been performed using CORSIKA program for conditions and configurations of Tunka133 EAS Cherenkov array. The simulation was fulfilled at the high energy range 1014-1016eV for four different zenith angles 0o, 10o, 15oand 30o. The results of the simulated Cherenkov light LDF are compared with the measurements of Tunka133 EAS array for the same particles and energy range mentioned above. This comparison may give the good ability to reconstruct the energy spectrum and mass composition of the primary cosmic ray particles in EAS. The main feature of the given approach consists of the possibility to make a library of Cherenkov light LDF samples which could be utilized for analysis of real events which can be detected with different EAS arrays and reconstruction of the primary cosmic rays energy spectrum and mass composition of EAS particles.


1968 ◽  
Vol 46 (10) ◽  
pp. S255-S258 ◽  
Author(s):  
T. Matano ◽  
M. Nagano ◽  
K. Suga ◽  
G. Tanahashi

A preliminary experiment to detect large air showers by means of radio echoes and to study the high-energy end of the primary cosmic-ray energy spectrum has been started at this Institute. The fundamental idea and the first approach of the experiment are presented. Using the telemetry system between two pairs of a simple scintillation array, which has been constructed to identify and calibrate the showers in the above experiment, the decoherence curve of air showers has been measured between 100 and 1 300 m together with the particle density in each detector. This simple experiment will give the power of the size spectrum above 109.


Sign in / Sign up

Export Citation Format

Share Document