Using the Laser Irradiation of Amorphous Alloys to Create Amorphous–Nanocrystalline Composites

2021 ◽  
Vol 85 (7) ◽  
pp. 755-759
Author(s):  
I. E. Permyakova ◽  
A. A. Ivanov ◽  
A. V. Shelyakov
1999 ◽  
Vol 75 (3) ◽  
pp. 340-342 ◽  
Author(s):  
Cang Fan ◽  
Dmitri V. Louzguine ◽  
Chunfei Li ◽  
Akihisa Inoue

Metals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 511 ◽  
Author(s):  
Inga Permyakova ◽  
Alex Glezer

This article presents systematic studies of the preparation method and the specific features of the changes in the structure and properties of amorphous-nanocrystalline composites formed from melt-quenched ribbons of iron- and cobalt-based amorphous alloys and the Cu-Nb crystalline nanolaminates by severe plastic deformation by torsion in the Bridgeman chamber at high quasi-hydrostatic pressure.


1993 ◽  
Vol 85 (8) ◽  
pp. 717-721 ◽  
Author(s):  
D. Sorescu ◽  
M. Sorescu ◽  
I.N. Mihailescu ◽  
D. Barb ◽  
A. Hening

2012 ◽  
Vol 48 (4) ◽  
pp. 1512-1515 ◽  
Author(s):  
A. Chrobak ◽  
A. Kaleta ◽  
P. Kwapulinski ◽  
M. Kubisztal ◽  
G. Haneczok

Author(s):  
A.R. Pelton ◽  
A.F. Marshall ◽  
Y.S. Lee

Amorphous materials are of current interest due to their desirable mechanical, electrical and magnetic properties. Furthermore, crystallizing amorphous alloys provides an avenue for discerning sequential and competitive phases thus allowing access to otherwise inaccessible crystalline structures. Previous studies have shown the benefits of using AEM to determine crystal structures and compositions of partially crystallized alloys. The present paper will discuss the AEM characterization of crystallized Cu-Ti and Ni-Ti amorphous films.Cu60Ti40: The amorphous alloy Cu60Ti40, when continuously heated, forms a simple intermediate, macrocrystalline phase which then transforms to the ordered, equilibrium Cu3Ti2 phase. However, contrary to what one would expect from kinetic considerations, isothermal annealing below the isochronal crystallization temperature results in direct nucleation and growth of Cu3Ti2 from the amorphous matrix.


Author(s):  
Burton B. Silver ◽  
Theodore Lawwill

Dutch-belted 1 to 2.5 kg anesthetized rabbits were exposed to either xenon or argon laser light administered in a broad band, designed to cover large areas of the retina. For laser exposure, the pupil was dilated with atropine sulfate 1% and pheny lephrine 10%. All of the laser generated power was within a band centered at 5145.0 Anstroms. Established threshold for 4 hour exposures to laser irradiation are in the order of 25-35 microwatts/cm2. Animals examined for ultrastructural changes received 4 hour threshold doses. These animals exhibited ERG, opthalmascopic, and histological changes consistent with threshold damage.One month following exposure the rabbits were killed with pentobarbitol. The eyes were immediately enucleated and dissected while bathed in 3% phosphate buffered gluteraldehyde.


Author(s):  
A. K. Rai ◽  
R. S. Bhattacharya ◽  
M. H. Rashid

Ion beam mixing has recently been found to be an effective method of producing amorphous alloys in the binary metal systems where the two original constituent metals are of different crystal structure. The mechanism of ion beam mixing are not well understood yet. Several mechanisms have been proposed to account for the observed mixing phenomena. The first mechanism is enhanced diffusion due to defects created by the incoming ions. Second is the cascade mixing mechanism for which the kinematicel collisional models exist in the literature. Third mechanism is thermal spikes. In the present work we have studied the mixing efficiency and ion beam induced amorphisation of Ni-Ti system under high energy ion bombardment and the results are compared with collisional models. We have employed plan and x-sectional veiw TEM and RBS techniques in the present work.


Author(s):  
S. Cao ◽  
A. J. Pedraza ◽  
L. F. Allard

Excimer-laser irradiation strongly modifies the near-surface region of aluminum nitride (AIN) substrates. The surface acquires a distinctive metallic appearance and the electrical resistivity of the near-surface region drastically decreases after laser irradiation. These results indicate that Al forms at the surface as a result of the decomposition of the Al (which has been confirmed by XPS). A computer model that incorporates two opposing phenomena, decomposition of the AIN that leaves a metallic Al film on the surface, and thermal evaporation of the Al, demonstrated that saturation of film thickness and, hence, of electrical resistance is reached when the rate of Al evaporation equals the rate of AIN decomposition. In an electroless copper bath, Cu is only deposited in laser-irradiated areas. This laser effect has been designated laser activation for electroless deposition. Laser activation eliminates the need of seeding for nucleating the initial layer of electroless Cu. Thus, AIN metallization can be achieved by laser patterning followed by electroless deposition.


Sign in / Sign up

Export Citation Format

Share Document