Estimating hydrological characteristics in the Amu Darya River basin under climate change conditions

2011 ◽  
Vol 36 (10) ◽  
pp. 681-689 ◽  
Author(s):  
N. A. Agal’tseva ◽  
M. V. Bolgov ◽  
T. Yu. Spektorman ◽  
M. D. Trubetskova ◽  
V. E. Chub
2021 ◽  
Vol 264 ◽  
pp. 03068
Author(s):  
Farrukh Kattakulov ◽  
Fotima Artikbekova ◽  
Zafar Gafurov ◽  
Gulnora Jumabaeva ◽  
Furqat Musulmanov

This research is devoted to the analysis of the dynamics of climate change in the Amu Darya river basin using the global climate model and observational data. And also, the purpose of the study is to scale down and correct the offset of the GCF and adaptation to the Amu Darya river basin and assess the dynamic climate change and its future predictions of the impact on the hydraulic structures of the Amu Darya river basin. The offset correction was carried out on the basis of data from open sources from the archives of the world meteorological organizations and the analysis performed for the next 100 years. The article analyzes the results of the regions affected by the climate [1] from the point of view of the reduction of water resources, the disappearance of glaciers, an increase in temperature, and a decrease in precipitation. An increase in temperature leads to a steady decrease in the area of large glaciers, while small glaciers gradually completely disappear and a change in the ratio of solid and liquid precipitation alternately, which leads to a reduction in snow cover and is also accompanied by degradation and melting of snow cover permafrost in high mountain areas. For future projections of glacier area and melt water release, glacier volume is required. Climate change affects the hydrological regime of the river; this process worsens the operational regime of hydraulic structures in the Amu Darya basin. Such changes in glaciation, snow cover, and permafrost negatively affect the change in river flow and its distribution and the ecological assessment of the quality of the environment. Therefore, the study of changes in climatic conditions in the region and the development of climate change scenarios for the XXI century is carried out following the recommendations of the IPCC using the necessary programs.


2020 ◽  
Vol 36 (2) ◽  
pp. 235-239
Author(s):  
Bakhtiyor Sheraliev ◽  
Sirojiddin Allayarov ◽  
Zuogang Peng

2021 ◽  
Author(s):  
Obaidullah Salehie ◽  
Mohammed Magdy Hamed ◽  
Tarmizi bin Ismail ◽  
Shamsuddin Shahid

Abstract Droughts significantly affect socioeconomic and the environment primarily by decreasing the water availability of a region. This study aims to assess the changes in drought characteristics in Central Asia's transboundary Amu Darya river basin for four shared socioeconomic pathways (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5). The precipitation, maximum and minimum temperature (Pr, Tmx and Tmn) simulations of 19 global climate models (GCMs) of the coupled model intercomparison project phase 6 (CMIP6) were used to select the best models to prepare the multimodel ensemble (MME). The standard precipitation evapotranspiration index (SPEI) was used to estimate droughts for multiple timescales from Pr and potential evapotranspiration (PET) derived from Tmx and Tmn. The changes in the frequency and spatial distribution of droughts for different severities and timescales were evaluated for the two future periods, 2020–2059 and 2060-2099, compared to the base period of 1975-2014. The study revealed four GCMs, AWI-CM-1-1-MR, CMCC-ESM2, INM-CM4-8 and MPI-ESM1-2-LR, as most suitable for projections of droughts in the study area. The multimodel ensemble (MME) mean of the selected GCMs showed a decrease in Pr by -3 to 12% in the near future and a change in the range of 3 to -9% in the far future in most parts of the basin for different SSPs. The PET showed almost no change in most parts of the basin in the near future and an increase in the range of 10 to 70% in the far future. The change (%) in projected drought occurrence showed to noticeably decrease in the near future, particularly for moderate droughts by up to ≤-50% for SSP5-8.5 and an increase in the far future by up to ≥30% for SSP3-7.0. The increase in all severities of droughts was projected mostly in the center and northwest of the basin. Overall, the results showed a drought shift from the east to the northwest of the basin in the future.


2019 ◽  
Vol 8 (1) ◽  
pp. 94
Author(s):  
Stulina Galina ◽  
Solodkiy Georgy ◽  
Eshtchanov Odilbek

Khorezm province is located in the northwest part of Uzbekistan in the basin of one of largest water sources – the Amu Darya River - and occupies the left bank in the Amu Darya lower reaches. The area of the province is 6,100 km2. The province borders Karakalpakstan in the North, Turkmenistan in the South, and Bukhara province of Uzbekistan in the South-East. Uzbekistan is situated in the territory, where high rates of climate change are expected and observed. According to forecasts, further climate change would cause even higher air temperatures, altered precipitation patterns and severe and prolonged droughts, with consequent lowering of available water resources. More plausible scenarios for Uzbekistan suggest more than 4°С rise in average annual air temperatures by 2080. Water discharge along the Amu Darya River is expected to decrease potentially by 10-15%. Objective of given work is to analyze and assess the positive impacts of climate change through alterations of bioclimatic potential in given terrain and agromelioration parameters of crops, with consequent changes in crop water requirements. Earlier research results showed that the observed growth of thermal potential allows earlier sowing and more rapid accumulation of effective temperatures. This will shorten plant development phases, on the one hand, and, as a result, reduce water use by crops, on the other hand.


Sign in / Sign up

Export Citation Format

Share Document