On the Erosion–Corrosion Behavior of Active Screen Plasma Nitrided St52 Steel

2018 ◽  
Vol 54 (4) ◽  
pp. 427-433
Author(s):  
M. Kiani Salavat ◽  
M. Soltanieh ◽  
M. Hasheminiasari
2019 ◽  
Vol 61 (7) ◽  
pp. 667-673 ◽  
Author(s):  
Osama M. Irfan ◽  
Mohammad A. Irfan ◽  
Fahad A. Almufadi

1993 ◽  
Vol 42 (1) ◽  
pp. 9-14
Author(s):  
Isao Sekine ◽  
Makoto Yuasa ◽  
Shigeyuki Niwa ◽  
Hirofumi Iino ◽  
Hisao Kakinuma ◽  
...  

2013 ◽  
Vol 44 (4) ◽  
pp. 1010-1016 ◽  
Author(s):  
Jun Wang ◽  
Yuanhua Lin ◽  
Mingxing Li ◽  
Hongyuan Fan ◽  
Dezhi Zeng ◽  
...  

Coatings ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1042
Author(s):  
Panneer Selvam Kevin ◽  
Abhishek Tiwari ◽  
Saravanan Seman ◽  
Syed Ali Beer Mohamed ◽  
Rengaswamy Jayaganthan

Cr3C2–NiCr coatings have been used extensively to combat the erosion corrosion of hydro power turbine blades made of stainless steel. Cr3C2–NiCr coatings are also used in aqueous corrosive environments due to the high corrosion resistance rendered by the NiCr binder. In this investigation, both erosion and corrosion environments are introduced to cermet coating to study corrosion behavior using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques. The cermet coatings are useful for reducing the risk of deterioration of mechanical properties of hydro power turbines due to the continuous exposure to the erosive and corrosive action of the corrosive environment containing silt. It was observed that Cr3C2–NiCr coating offered a reasonable improvement in corrosion resistance when compared to bare substrate. The corrosion behavior of the coating was studied in a 150 mL solution of 0.1 M NaCl with 2 gms of quartz particles (0.2–0.8 mm) at various rotation speeds (3000, 4500, 6000 rpm) of the solution over a 1 h immersion using potentiodynamic polarization and EIS studies in a specifically designed experimental set-up for erosion corrosion. When compared to the bare stainless steel samples at 3000 rpm and 6000 rpm, the coating showed the highest improvement at 6.57 times and the least improvement at 3.79 times, respectively.


2020 ◽  
Vol 1002 ◽  
pp. 161-174
Author(s):  
Nawal Mohammed Dawood

Aluminium as matrix in particulars have been vastlys investigateds, this is becauses of the diverses applicationss of aluminium dues to its exceptional propertiess. Material scientistss alwayss face a challenges when it comess to the tribologicals and mechanicals propertiess of aluminium, as it exudess rather poors behaviours in these aspectss. Hences this works aims to improves the mechanicals and corrosives resistances of Aluminiums by reinforcings with aluminum oxides and Nickel throughs stir casting usings vortex techniques. Al-Ni-Al2O3 composites with percentages of Ni fixed at 20 % and Al2O3 differed through 4-8% in incrementss of 2 wt. % . Composites material was prepareds by stir castings using vortex techniques. The hardness value of the aluminiums matrix composites improved with increaseds percentages of Al2O3, maximums increase was obtaineds for 8% Al2O3 composite, viewing an increases of about 55%. A generals corrosions and erosion-corrosions for the Al-20%Ni bases alloys and the prepareds composites were carrieds out in 3.5wt% NaCl solutions as corrosives mediums for general corrosions while in erosion-corrosions with impacts angles 90° in slurry solutions ( 1wt%SiO2 sand in 3.5wt% NaCl solution as the erodent). It was founds that the general corrosions rates for composite specimens is lower than thats of the bases alloy (Al-20%Ni). In case of erosion-corrosion resultss, it was founds that the erosion corrosions resistances property of the prepareds composites improveds significantlys with the increaseds percentages of Al2O3. There wass a noticeable improvements in the corrosion resistances of the aluminiums composites compareds to its purest forms, owing to the presences of nickel. Howevers, the increases in Al2O3 percentages decrease the corrosions rates. The extreme decreases was obtaineds for 8% Al2O3 composites, with a decreases of 26% corrosion rates in (mpy) unit for composites material is lowers than that of the bases alloys.


Sign in / Sign up

Export Citation Format

Share Document