Statistical analysis for rotational motion of a light descent capsule under deployment of a space cable system

2012 ◽  
Vol 55 (2) ◽  
pp. 164-169
Author(s):  
O. N. Naumov
1999 ◽  
Vol 649 (1-4) ◽  
pp. 361-369 ◽  
Author(s):  
S. Leoni ◽  
A. Bracco ◽  
S. Frattini ◽  
G. Montingelli ◽  
E. Vigezzi ◽  
...  

2014 ◽  
Vol 54 (supplement1-2) ◽  
pp. S189
Author(s):  
Hiroto Tanaka ◽  
Tadashi Matsukawa ◽  
Takashi Sagawa ◽  
Sakura Maesato ◽  
Yukihiro Tominari ◽  
...  

2021 ◽  
Vol 2090 (1) ◽  
pp. 012036
Author(s):  
J. S. Espinoza Ortiz ◽  
R.E. Lagos-Monaco

Abstract We soften the non zero y-boundary on a Bunimovich like quarter-stadium. The smoothing procedure is performed via an exponent monomial potential, the system becomes partially reflective, preserving the particle’s translation and rotational motion. By increasing the exponent value, the stadium’s boundaries become rigid and the system’s dynamics reaches a chaotic regime. We set a leaking soft stadium family by opening a limited region located at some place of its basis’s boundary, throughout which the particles can leak out. This work is an extension of our recently reported paper on this matter. We chase the particle’s trajectory and focus on the stadium transient behavior by means of the statistical analysis of the survival probability on the marginal orbits that never leave the system, the so called bouncing ball orbits. We compare these family orbits with the billiard’s transient chaos orbits.


2018 ◽  
Vol 616 ◽  
pp. A99 ◽  
Author(s):  
P. Kayshap ◽  
K. Murawski ◽  
A. K. Srivastava ◽  
B. N. Dwivedi

Aims. We perform a detailed observational analysis of network jets to understand their kinematics, rotational motion, and underlying triggering mechanism(s). We analyzed the quiet-Sun (QS) data. Methods. IRIS high-resolution imaging and spectral observations (slit-jaw images: Si IV 1400.0 Å; raster: Si IV 1393.75 Å) were used to analyze the omnipresent rotating network jets in the transition region (TR). In addition, we also used observations from the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamic Observation (SDO). Results. The statistical analysis of 51 network jets is performed to understand their various mean properties, e.g., apparent speed (140.16 ± 39.41 km s−1), length (3.16 ± 1.18 Mm), and lifetimes (105.49 ± 51.75 s). The Si IV 1393.75 Å line has a secondary component along with its main Gaussian, which is formed due to the high-speed plasma flows (i.e., network jets). The variation in Doppler velocity across these jets (i.e., blueshift on one edge and redshift on the other) signify the presence of inherited rotational motion. The statistical analysis predicts that the mean rotational velocity (i.e., ΔV) is 49.56 km s−1. The network jets have high-angular velocity in comparison to the other class of solar jets. Conclusions. The signature of network jets is inherited in TR spectral lines in terms of the secondary component of the Si IV 1393.75 Å line. The rotational motion of network jets is omnipresent, which is reported first for this class of jet-like features. The magnetic reconnection seems to be the most favorable mechanism for the formation of these network jets.


1966 ◽  
Vol 24 ◽  
pp. 188-189
Author(s):  
T. J. Deeming

If we make a set of measurements, such as narrow-band or multicolour photo-electric measurements, which are designed to improve a scheme of classification, and in particular if they are designed to extend the number of dimensions of classification, i.e. the number of classification parameters, then some important problems of analytical procedure arise. First, it is important not to reproduce the errors of the classification scheme which we are trying to improve. Second, when trying to extend the number of dimensions of classification we have little or nothing with which to test the validity of the new parameters.Problems similar to these have occurred in other areas of scientific research (notably psychology and education) and the branch of Statistics called Multivariate Analysis has been developed to deal with them. The techniques of this subject are largely unknown to astronomers, but, if carefully applied, they should at the very least ensure that the astronomer gets the maximum amount of information out of his data and does not waste his time looking for information which is not there. More optimistically, these techniques are potentially capable of indicating the number of classification parameters necessary and giving specific formulas for computing them, as well as pinpointing those particular measurements which are most crucial for determining the classification parameters.


Author(s):  
Gianluigi Botton ◽  
Gilles L'espérance

As interest for parallel EELS spectrum imaging grows in laboratories equipped with commercial spectrometers, different approaches were used in recent years by a few research groups in the development of the technique of spectrum imaging as reported in the literature. Either by controlling, with a personal computer both the microsope and the spectrometer or using more powerful workstations interfaced to conventional multichannel analysers with commercially available programs to control the microscope and the spectrometer, spectrum images can now be obtained. Work on the limits of the technique, in terms of the quantitative performance was reported, however, by the present author where a systematic study of artifacts detection limits, statistical errors as a function of desired spatial resolution and range of chemical elements to be studied in a map was carried out The aim of the present paper is to show an application of quantitative parallel EELS spectrum imaging where statistical analysis is performed at each pixel and interpretation is carried out using criteria established from the statistical analysis and variations in composition are analyzed with the help of information retreived from t/γ maps so that artifacts are avoided.


Sign in / Sign up

Export Citation Format

Share Document