scholarly journals Mathematics Model Development Deployment of Dengue Fever Diseases by Involve Human and Vectors Exposed Components

Author(s):  
Flaviana Priscilla Persulessy ◽  
Paian Siantur ◽  
Jaharuddin .

Dengue virus is one of virus that cause deadly disease was dengue fever. This virus was transmitted through bite of Aedes aegypti female mosquitoes that gain virus infected by taking food from infected human blood, then mosquitoes transmited pathogen to susceptible humans. Suppressed the spread and growth of dengue fever was important to avoid and prevent the increase of dengue virus sufferer and casualties. This problem can be solved with studied important factors that affected the spread and equity of disease by sensitivity index. The purpose of this research were to modify mathematical model the spread of dengue fever be SEIRS-ASEI type, to determine of equilibrium point, to determined of basic reproduction number, stability analysis of equilibrium point, calculated sensitivity index, to analyze sensitivity, and to simulate numerical on modification model. Analysis of model obtained disease free equilibrium (DFE) point and endemic equilibrium point. The numerical simulation result had showed that DFE, stable if the basic reproduction number is less than one and endemic equilibrium point was stable if the basic reproduction number is more than one.

2018 ◽  
Vol 15 (2) ◽  
pp. 67
Author(s):  
Stella Maryana Belwawin

AbstractThis aim of this study is to determine the point of equilibrium and analyze the stability of SEIAR-SEI model on malaria disease with asymptomatic infection, super infection and the effect of the mosquito's life cycle. This study also aim is to measure the sensitivity of the spread of malaria to the parameters of asymptomatic infections, the rate of treatment, and the rate of birth of mosquitoes through the magnitude of . The method in this research is deductively, through several stage, such as  determination of disease-free equilibrium point and endemic equilibrium point, determination of basic reproduction number (), analyze of the basic reproduction number sensitivity of the spread of malaria to the parameters of asymptomatic infections, the rate of treatment, and the rate of birth of mosquitoes. The endemic equilibrium point was obtained using rule of Descartes. The result show that the change in the value of parameter , , and  has effect on the basic reproduction number (). Treatment factors in the human population influence the elimination of malaria in a population. Whereas asymptomatic infection factors and the birth rate of adult mosquitoes influence the increase in malaria infection. Keywords:  Malaria, asymptomatic infection, super infection, basic reproduction number, rule of descrates. AbstrakPenelitian ini bertujuan menentukan titik keseimbangan dan menganalisis kestabilan dari model SEIAR_SEI pada penyakit malaria dengan pengaruh infeksi asimtomatik, super infeksi, dan siklus hidup nyamuk. Penelitian ini juga bertujuan mengukur tingkat sensitivitas penyebaran penyakit malaria terhadap parameter infeksi asimtomatik, laju pengobatan, serta laju kelahiran nyamuk.melalu besaran .  Metode yang digunakan dalam penelitian ini adalah metode deduktif dengan langkah-langkah : menentukan titik keseimbangan bebas penyakit dan endemik dan menentukan bilangan reproduksi dasar ). Analisis sensitivitas bilangan reproduksi dasar dilakukan terhadap parameter infeksi asimtomatik, pengobatan, dan laju kelahiran nyamuk. Tititk keseimbangan endemik diperoleh dengan aturan descrates. Hasil yang diperoleh menunjukkan parameter , , dan  berpengaruh terhadap bilangan reproduksi dasar (). Faktor pengobatan berpengaruh terhadap eliminasi penyakit malaria. Sedangkan faktor infeksi asimtomatik dan laju kelahiran nyamuk dewasa berpengaruh terhadap peningkatan infeksi penyakit malaria. Kata kunci: Malaria, Infeksi Asimtomatik, Super Infeksi, Bilangan Reproduksi Dasar, Aturan Descrates . 


2020 ◽  
Vol 10 (22) ◽  
pp. 8296 ◽  
Author(s):  
Malen Etxeberria-Etxaniz ◽  
Santiago Alonso-Quesada ◽  
Manuel De la Sen

This paper investigates a susceptible-exposed-infectious-recovered (SEIR) epidemic model with demography under two vaccination effort strategies. Firstly, the model is investigated under vaccination of newborns, which is fact in a direct action on the recruitment level of the model. Secondly, it is investigated under a periodic impulsive vaccination on the susceptible in the sense that the vaccination impulses are concentrated in practice in very short time intervals around a set of impulsive time instants subject to constant inter-vaccination periods. Both strategies can be adapted, if desired, to the time-varying levels of susceptible in the sense that the control efforts be increased as those susceptible levels increase. The model is discussed in terms of suitable properties like the positivity of the solutions, the existence and allocation of equilibrium points, and stability concerns related to the values of the basic reproduction number. It is proven that the basic reproduction number lies below unity, so that the disease-free equilibrium point is asymptotically stable for larger values of the disease transmission rates under vaccination controls compared to the case of absence of vaccination. It is also proven that the endemic equilibrium point is not reachable if the disease-free one is stable and that the disease-free equilibrium point is unstable if the reproduction number exceeds unity while the endemic equilibrium point is stable. Several numerical results are investigated for both vaccination rules with the option of adapting through ime the corresponding efforts to the levels of susceptibility. Such simulation examples are performed under parameterizations related to the current SARS-COVID 19 pandemic.


2016 ◽  
Vol 5 (1) ◽  
pp. 23
Author(s):  
Endah Purwati ◽  
Sugiyanto Sugiyanto

Ebola is a deadly disease caused by a virus and is spread through direct contact with blood or body fluids such as urine, feces, breast milk, saliva and semen. In this case, direct contact means that the blood or body fluids of patients were directly touching the nose, eyes, mouth, or a wound someone open. In this paper examined two mathematical models SIRD (Susceptibles-Infected-Recovery-Deaths) the spread of the Ebola virus in the human population. Both the mathematical model SIRD on the spread of the Ebola virus is a model by Abdon A. and Emile F. D. G. and research development model. This study was conducted to determine the point of disease-free equilibrium and endemic equilibrium point and stability analysis of the dots, knowing the value of the basic reproduction number (R0) and a simulation model using Matlab software version 6.1.0.450. From the analysis of the two models, obtained the same point for disease-free equilibrium point with the stability of different points and different points for endemic equilibrium point with the stability of both the same point and the same value to the value of the basic reproduction number (R0). After simulating the model using Matlab software version 6.1.0.450, it can be seen changes in the behavior of the population at any time.


2021 ◽  
Vol 2 (2) ◽  
pp. 68-79
Author(s):  
Muhammad Manaqib ◽  
Irma Fauziah ◽  
Eti Hartati

This study developed a model for the spread of COVID-19 disease using the SIR model which was added by a health mask and quarantine for infected individuals. The population is divided into six subpopulations, namely the subpopulation susceptible without a health mask, susceptible using a health mask, infected without using a health mask, infected using a health mask, quarantine for infected individuals, and the subpopulation to recover. The results obtained two equilibrium points, namely the disease-free equilibrium point and the endemic equilibrium point, and the basic reproduction number (R0). The existence of a disease-free equilibrium point is unconditional, whereas an endemic equilibrium point exists if the basic reproduction number is more than one. Stability analysis of the local asymptotically stable disease-free equilibrium point when the basic reproduction number is less than one. Furthermore, numerical simulations are carried out to provide a geometric picture related to the results that have been analyzed. The results of numerical simulations support the results of the analysis obtained. Finally, the sensitivity analysis of the basic reproduction numbers carried out obtained four parameters that dominantly affect the basic reproduction number, namely the rate of contact of susceptible individuals with infection, the rate of health mask use, the rate of health mask release, and the rate of quarantine for infected individuals.


CAUCHY ◽  
2020 ◽  
Vol 6 (3) ◽  
pp. 122-132
Author(s):  
Joko Harianto ◽  
Inda Puspita Sari

Discussion of local stability analysis of SVIR models in this article is included in the scope of applied mathematics. The purpose of this discussion was to provide results of local stability analysis that had not been discussed in some articles related to the SVIR model. The SVIR models discussed in this article involve logistics growth in the vaccinated compartment. The results obtained, i.e. if the basic reproduction number less than one and m is positive, then there is one equilibrium point i.e. E0 is locally asymptotically stable. In the field of epidemiology, this means that the disease will disappear from the population. However, if the basic reproduction number more than one and b1 more than b, then there are two equilibrium points i.e. disease-free equilibrium point denoted by E0 and the endemic equilibrium point denoted by E1*. In this case the endemic equilibrium point E1* is locally asymptotically stable. In the field of epidemiology, this means that the disease will remain in the population. The numerical simulation supports these results.


2021 ◽  
Vol 16 ◽  
pp. 1-9
Author(s):  
Joko Harianto

This article discusses modifications to the SEIL model that involve logistical growth. This model is used to describe the dynamics of the spread of tuberculosis disease in the population. The existence of the model's equilibrium points and its local stability depends on the basic reproduction number. If the basic reproduction number is less than unity, then there is one equilibrium point that is locally asymptotically stable. The equilibrium point is a disease-free equilibrium point. If the basic reproduction number ranges from one to three, then there are two equilibrium points. The two equilibrium points are disease-free equilibrium and endemic equilibrium points. Furthermore, for this case, the endemic equilibrium point is locally asymptotically stable.


2017 ◽  
Vol 9 (2) ◽  
pp. 21
Author(s):  
Tesa Nur Padilah ◽  
Najmudin Fauji

Orange fruits are important commodities in Indonesia. However, the efforts to increase production of oranges still have obstacles. One of them is because ofCVPD (Citrus Vein Phloem Degeneration) disease. The spread of CVPD disease in orange plants can be modeled by mathematical model, that is epidemic model betweenorange plants as a host plant and Diaphorina Citri as a vector. In this model, predation response follows Holling Type II response function. The model is then analyzed by checking the stability of the equilibrium point and computing basic reproduction number. This model has an endemic equilibrium point. If the basic reproduction number is more than one then an endemic equilibrium point is locally asymptotic stable or epidemic which means that it occurs in the population. The simulation result of the model are in good agreement with the model behavior analysis.


Author(s):  
Oluwafemi Temidayo J. ◽  
Azuaba E. ◽  
Lasisi N. O.

In this study, we analyzed the endemic equilibrium point of a malaria-hygiene mathematical model. We prove that the mathematical model is biological and meaningfully well-posed. We also compute the basic reproduction number using the next generation method. Stability analysis of the endemic equilibrium point show that the point is locally stable if reproduction number is greater that unity and globally stable by the Lasalle’s invariant principle. Numerical simulation to show the dynamics of the compartment at various hygiene rate was carried out.


Author(s):  
Abdul Faliq Anwar ◽  
Windarto Windarto ◽  
Cicik Alfiniyah

Co-infection of influenza A virus and pneumococcus is caused by influenza A virus and pneumococcus bacteria which infected host cell at the same time. The purpose of this thesis is to analyze stability of equilibrium point on mathematical model within-host co-infection of influenza A and pneumococcus. Based on anlytical result of the model there are four quilibrium points, non endemic co-infection equilibrium (E0), endemic influenza A virus equilibrium (E1), endemic pneumococcus equilbrium (E2) and endemic co-infection equilibrium (E3). By Next Generation Matrix (NGM), we obtain two basic reproduction number, which are basic reproduction number for influenza A virus (R0v) and basic reproduction number for pneumococcus (R0b). Existence of equilibrium point and local stability of equilibrium point dependent on basic reproduction number. Non endemic co-infection equilibrium is locally asymtotically stable if R0v < 1 and R0b < 1; influenza A virus endemic equilibrium is locally asymtotically stable if R0v > 1 and R0b > 1; pneumococcus endemic equilibrium is locally asymtotically stable if R0v < 1 and R0b > 1. Meanwhile, the co-infection endemic equilibrium is locally asymtotically stable if R0v > 1 and R0b > 1. From the numerical simulation result, it was shown that increasing the number of influenza A virus and pneumococcus made the number of population cell infected by influenza A virus and pneumococcus (co-infection) also increased.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Xiangyun Shi ◽  
Guohua Song

This paper formulates and analyzes a pine wilt disease model. Mathematical analyses of the model with regard to invariance of nonnegativity, boundedness of the solutions, existence of nonnegative equilibria, permanence, and global stability are presented. It is proved that the global dynamics are determined by the basic reproduction numberℛ0and the other valueℛcwhich is larger thanℛ0. Ifℛ0andℛcare both less than one, the disease-free equilibrium is asymptotically stable and the pine wilt disease always dies out. If one is between the two values, though the pine wilt disease could occur, the outbreak will stop. If the basic reproduction number is greater than one, a unique endemic equilibrium exists and is globally stable in the interior of the feasible region, and the disease persists at the endemic equilibrium state if it initially exists. Numerical simulations are carried out to illustrate the theoretical results, and some disease control measures are especially presented by these theoretical results.


Sign in / Sign up

Export Citation Format

Share Document