Hysteresis of grain boundary mobility due to grain boundary phase transitions.

Author(s):  
V.G. Sursaeva ◽  

The paper presents experimental results of studying the motion of individual special tilt grain boundaries in the form of a half-loop with a facet. There is a deviation of temperature dependence of grain boundary mobility from Arrhenius dependence. This behavior is interpreted as a manifestation of grain boundary mobility hysteresis due to the faceting-defaceting phase transition. The values of the temperature of the faceting - defaceting phase transitions and the hysteresis parameters of grain boundary mobility were determined experimentally for the studied individual boundaries.

Author(s):  
V.G. Sursaeva ◽  

The hysteresis of the temperature dependence of grain boundary mobility due to grain boundary phase transitions has been studied. It was found experimentally that the dependence of grain boundary mobility on the inverse annealing temperature was nonlinear and did not coincide during heating and cooling. The curvilinear segment formed by temperature dependences of mobility at heating and cooling is considered as a hysteresis loop.


1991 ◽  
Vol 05 (19) ◽  
pp. 2989-3028 ◽  
Author(s):  
E.I. RABKIN ◽  
L.S. SHVINDLERMAN ◽  
B.B. STRAUMAL

Recent theories of grain boundary structure have been reviewed briefly. The possibility of existence of the same variety of phase transitions on grain boundaries as that on the crystal external surface has been demonstrated. Recent experimental data and theoretical models concerning grain boundary phase transitions are critically analysed. Grain boundary phase transitions connected with the formation of thin disordered layers on the boundary (prewetting, premelting) are particularly distinguished. Results of recent indirect experiments, which may be treated in terms of prewetting and premelting, have been reviewed. Experimentally observed critical phenomena in the vicinity of the prewetting transition on the tin-germanium interphase boundary have been discussed in terms of the critical exponents theory. Some ideas regarding directions of further research are presented.


Electron microscope observations on some polycrystalline metals suggest that after small to moderate deformation, recrystallization occurs by the migration of the original grain boundaries. A theory based on this mechanism can account for the known form of the recrystallization kinetics without necessarily introducing any anisotropy of grain boundary mobility. For this mechanism the so-called recrystallization activation energy is identical to the activation energy for grain boundary migration.


2012 ◽  
Vol 715-716 ◽  
pp. 191-196
Author(s):  
Myrjam Winning ◽  
Dierk Raabe

The paper introduces first investigations on how low angle grain boundaries can influence the recrystallisation behaviour of crystalline metallic materials. For this purpose a three-dimensional cellular automaton model was used. The approach in this study is to allow even low angle grain boundaries to move during recrystallisation. The effect of this non-zero mobility of low angle grain boundaries will be analysed for the recrystallisation of deformed Al single crystals with Cube orientation. It will be shown that low angle grain boundaries indeed influence the kinetics as well as the texture evolution of metallic materials during recrystallisation.


Author(s):  
Yonn Kouh Simpson ◽  
C. Barry Carter

Understanding the nature of glass/crystalline interfaces is not only of fundamental scientific interest but is directly relevant to the liquid-phase sintering of polycrystalline ceramics such as α-alumina. Faceting behavior of alumina in the presence of SiO2 glass has been of much interest in the field of sintering with respect to the grain growth and the grain boundary mobility during sintering. The study of grain boundaries containing a glassy phase in alumina compacts is difficult however, since many of the TEM techniques presently available for the identification of a glassy phase at grain boundaries can give ambiguous results due to grain boundary grooving. A method for systematically studying glassy / crystalline interfaces without such ambiguity is therefore needed. Part of this study of the interaction of grain boundaries in alumina with an anorthite-based glassy phase is presented here.Previous systematic studies4 of different low-index surfaces of single crystal alumina showed that there is strong anisotropy in the faceting behavior of alumina and in the mobility of these facets in the presence of an anorthite-based glassy phase.


Metals ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1254
Author(s):  
Zhenghua He ◽  
Yuhui Sha ◽  
Ning Shan ◽  
Yongkuang Gao ◽  
Fan Lei ◽  
...  

Secondary recrystallization Goss texture was efficiently achieved in rolled, binary Fe81Ga19 alloy sheets without the traditional dependence on inhibitors and the surface energy effect. The development of abnormal grain growth (AGG) of Goss grains was analyzed by quasi-situ electron backscatter diffraction (EBSD). The special primary recrystallization texture with strong {112}–{111}<110> and weak Goss texture provides the inherent pinning effect for normal grain growth by a large number of low angle grain boundaries (<15°) and very high angle grain boundaries (>45°) according to the calculation of misorientation angle distribution. The evolution of grain orientation and grain boundary characteristic indicates that the higher fraction of high energy grain boundaries (20–45°) around primary Goss grains supplies a relative advantage in grain boundary mobility from 950 °C to 1000 °C. The secondary recrystallization in binary Fe81Ga19 alloy is realized in terms of the controllable grain boundary mobility difference between Goss and matrix grains, coupled with the orientation and misorientation angle distribution of adjacent matrix grains.


2020 ◽  
Vol 194 ◽  
pp. 412-421 ◽  
Author(s):  
Kongtao Chen ◽  
Jian Han ◽  
David J. Srolovitz

2019 ◽  
Vol 22 ◽  
pp. 160-169
Author(s):  
Boris Bokstein ◽  
Alexey Rodin ◽  
Aleksei Itckovich ◽  
Leonid Klinger

The paper is devoted to some properties of grain boundaries: Segregation and concentration phase transitions – two important consequences of atomic interactions in grain boundaries. Except of a short description the Gibbs method of surface excesses and grain boundary segregation isotherms with the limited number of segregation sites in grain boundary, the paper concentrates on the effects of complexes formation, including thermodynamic and computer modeling, and concentration phase transition in the grain boundaries in systems with restricted solubility and intermediate compounds.


2005 ◽  
Vol 53 (18) ◽  
pp. 4863-4869 ◽  
Author(s):  
O.B. Nasello ◽  
C.L. Di Prinzio ◽  
P.G. Guzmán

Sign in / Sign up

Export Citation Format

Share Document