The interaction between basal-twin boundaries and a glassy phase in α-Alumina compacts

Author(s):  
Yonn Kouh Simpson ◽  
C. Barry Carter

Understanding the nature of glass/crystalline interfaces is not only of fundamental scientific interest but is directly relevant to the liquid-phase sintering of polycrystalline ceramics such as α-alumina. Faceting behavior of alumina in the presence of SiO2 glass has been of much interest in the field of sintering with respect to the grain growth and the grain boundary mobility during sintering. The study of grain boundaries containing a glassy phase in alumina compacts is difficult however, since many of the TEM techniques presently available for the identification of a glassy phase at grain boundaries can give ambiguous results due to grain boundary grooving. A method for systematically studying glassy / crystalline interfaces without such ambiguity is therefore needed. Part of this study of the interaction of grain boundaries in alumina with an anorthite-based glassy phase is presented here.Previous systematic studies4 of different low-index surfaces of single crystal alumina showed that there is strong anisotropy in the faceting behavior of alumina and in the mobility of these facets in the presence of an anorthite-based glassy phase.

Electron microscope observations on some polycrystalline metals suggest that after small to moderate deformation, recrystallization occurs by the migration of the original grain boundaries. A theory based on this mechanism can account for the known form of the recrystallization kinetics without necessarily introducing any anisotropy of grain boundary mobility. For this mechanism the so-called recrystallization activation energy is identical to the activation energy for grain boundary migration.


2012 ◽  
Vol 715-716 ◽  
pp. 191-196
Author(s):  
Myrjam Winning ◽  
Dierk Raabe

The paper introduces first investigations on how low angle grain boundaries can influence the recrystallisation behaviour of crystalline metallic materials. For this purpose a three-dimensional cellular automaton model was used. The approach in this study is to allow even low angle grain boundaries to move during recrystallisation. The effect of this non-zero mobility of low angle grain boundaries will be analysed for the recrystallisation of deformed Al single crystals with Cube orientation. It will be shown that low angle grain boundaries indeed influence the kinetics as well as the texture evolution of metallic materials during recrystallisation.


Metals ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1254
Author(s):  
Zhenghua He ◽  
Yuhui Sha ◽  
Ning Shan ◽  
Yongkuang Gao ◽  
Fan Lei ◽  
...  

Secondary recrystallization Goss texture was efficiently achieved in rolled, binary Fe81Ga19 alloy sheets without the traditional dependence on inhibitors and the surface energy effect. The development of abnormal grain growth (AGG) of Goss grains was analyzed by quasi-situ electron backscatter diffraction (EBSD). The special primary recrystallization texture with strong {112}–{111}<110> and weak Goss texture provides the inherent pinning effect for normal grain growth by a large number of low angle grain boundaries (<15°) and very high angle grain boundaries (>45°) according to the calculation of misorientation angle distribution. The evolution of grain orientation and grain boundary characteristic indicates that the higher fraction of high energy grain boundaries (20–45°) around primary Goss grains supplies a relative advantage in grain boundary mobility from 950 °C to 1000 °C. The secondary recrystallization in binary Fe81Ga19 alloy is realized in terms of the controllable grain boundary mobility difference between Goss and matrix grains, coupled with the orientation and misorientation angle distribution of adjacent matrix grains.


2013 ◽  
Vol 753 ◽  
pp. 107-112 ◽  
Author(s):  
Christoph Günster ◽  
Dmitri A. Molodov ◽  
Günter Gottstein

The motion of grain boundaries in zinc bicrystals (99.995%) driven by the “magnetic” driving force was investigated. Planar symmetrical and asymmetrical tilt grain boundaries with rotation angles in the range between 60° and 90° were examined. At a given temperature the boundary migration rate was found to increase linearly with an applied driving force. The absolute grain boundary mobility was determined. The boundary mobility and its temperature dependence were found to depend on the misorientation angle and the inclination of the boundary plane. An application of a magnetic field during the annealing of cold rolled (90%) Zn-1.1%Al sheet specimens resulted in an asymmetry of the two major texture components. This is interpreted in terms of magnetically affected grain growth kinetics.


Author(s):  
Blas P. Uberuaga ◽  
Pauline Simonnin ◽  
Kevin M. Rosso ◽  
Daniel K. Schreiber ◽  
Mark Asta

AbstractMass transport along grain boundaries in alloys depends not only on the atomic structure of the boundary, but also its chemical make-up. In this work, we use molecular dynamics to examine the effect of Cr alloying on interstitial and vacancy-mediated transport at a variety of grain boundaries in Ni. We find that, in general, Cr tends to reduce the rate of mass transport, an effect which is greatest for interstitials at pure tilt boundaries. However, there are special scenarios in which it can greatly enhance atomic mobility. Cr tends to migrate faster than Ni, though again this depends on the structure of the grain boundary. Further, grain boundary mobility, which is sometimes pronounced for pure Ni grain boundaries, is eliminated on the time scales of our simulations when Cr is present. We conclude that the enhanced transport and grain boundary mobility often seen in this system in experimental studies is the result of non-equilibrium effects and is not intrinsic to the alloyed grain boundary. These results provide new insight into the role of grain boundary alloying on transport that can help in the interpretation of experimental results and the development of predictive models of materials evolution.


Author(s):  
V.G. Sursaeva ◽  

The paper presents experimental results of studying the motion of individual special tilt grain boundaries in the form of a half-loop with a facet. There is a deviation of temperature dependence of grain boundary mobility from Arrhenius dependence. This behavior is interpreted as a manifestation of grain boundary mobility hysteresis due to the faceting-defaceting phase transition. The values of the temperature of the faceting - defaceting phase transitions and the hysteresis parameters of grain boundary mobility were determined experimentally for the studied individual boundaries.


2016 ◽  
Vol 879 ◽  
pp. 1501-1506 ◽  
Author(s):  
David Piot ◽  
Guillaume Smagghe ◽  
Frank Montheillet

A simple mesoscale model has been developed for discontinuous dynamic recrystallization. Each grain is considered in turn as an inclusion, embedded in a homogeneous equivalent matrix, the properties of which are obtained by averaging over all the grains. The model includes: (i) a grain-boundary migration-equation driving the evolution of grain size via the mobility of grain boundaries, which is coupled with (ii) a single-internal-variable (dislocation density) constitutive model for strain hardening and dynamic recovery, and (iii) a nucleation equation governing the total number of grains by the nucleation of new grains. All the system variables tend to asymptotic values at large strains, in agreement with the experimentally observed steady-state regime.With some assumptions, both steady-state stress and grain-size are derived in closed forms, allowing immediate identification of the mobility of grain boundaries and the rate of nucleation. An application to Ni–Nb-pure-binary model alloys and high-purity 304L stainless steel with Nb addition is presented. More specifically on one hand, from experimental steady-state stresses and grain sizes, variations of the grain boundary mobility and the nucleation rate with niobium content are addressed in order to quantify the solute-drag effect of niobium in nickel. And on the other hand, the Derby exponents were investigated varying separately the strain rate or the temperature.


2013 ◽  
Vol 333 ◽  
pp. 101-106
Author(s):  
Dmitri A. Molodov ◽  
Christoph Günster ◽  
Günter Gottstein

The migration of planar grain boundaries induced by a magnetic field was measured in specially grown zinc bicrystals (99.995%). Particularly, symmetrical and asymmetrical <> tilt grain boundaries with rotation angles in the range between 60° and 90° were investigated. Boundary migration was measured in-situ in the temperature range between 330°C and 415°C and the absolute values of grain boundary mobility were obtained. The results revealed that grain boundary mobility essentially depends on the misorientation angle and the inclination of the boundary plane. An application of a magnetic field during the annealing of cold rolled (90%) Zn-1.1%Al sheet specimens substantially affected the texture and microstructure evolution. This effect is attributed to the additional magnetic driving force for grain growth arising due to the magnetic anisotropy of zinc.


2004 ◽  
Vol 467-470 ◽  
pp. 1045-1050 ◽  
Author(s):  
Koenraad G.F. Janssens ◽  
Elizabeth A. Holm ◽  
Stephen M. Foiles

In this paper we discuss the principles of a combined approach to solve the problem of solute drag as it occurs in microstructure evolution processes such as grain growth, recrystallization and phase transformation. A recently developed irregular grid cellular automaton is used to simulate normal grain growth, in which the energy of the grain boundaries is the driving force. A new, discrete diffusion model is used to simulate solute segregation to the grain boundaries. The local concentration of the solute is then taken into account in the calculation of the local grain boundary mobility and/or grain boundary energy, thereby constituting a drag force. The relation between solute concentration and grain boundary mobility/energy is derived from molecular dynamics simulations.


Nanomaterials ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 552 ◽  
Author(s):  
Rodolfo Aguirre ◽  
Sharmin Abdullah ◽  
Xiaowang Zhou ◽  
David Zubia

Molecular dynamics (MD) simulations have been applied to study mobilities of Σ3, Σ7 and Σ11 grain boundaries in CdTe. First, an existing MD approach to drive the motion of grain boundaries in face-centered-cubic and body-centered-cubic crystals was generalized for arbitrary crystals. MD simulations were next performed to calculate grain boundary velocities in CdTe crystals at different temperatures, driving forces, and grain boundary terminations. Here a grain boundary is said to be Te-terminated if its migration encounters sequentially C d · T e − C d · T e … planes, where “·” and “−” represent short and long spacing respectively. Likewise, a grain boundary is said to be Cd-terminated if its migration encounters sequentially T e · C d − T e · C d … planes. Grain boundary mobility laws, suitable for engineering time and length scales, were then obtained by fitting the MD results to Arrhenius equation. These studies indicated that the Σ3 grain boundary has significantly lower mobility than the Σ7 and Σ11 grain boundaries. The Σ7 Te-terminated grain boundary has lower mobility than the Σ7 Cd-terminated grain boundary, and that the Σ11 Cd-terminated grain boundary has lower mobility than the Σ11 Te-terminated grain boundary.


Sign in / Sign up

Export Citation Format

Share Document