scholarly journals Synthesis of Silver Nanoparticles by Ocimum basilicum Seed Extract and its Application in H2O2 Sensing

2020 ◽  
Vol 3 (7) ◽  
pp. 17-22
Author(s):  
Fouzia , ◽  
Atirah Tauseef ◽  
Ahmad Khalilullah ◽  
Imran Uddin
2021 ◽  
Vol 11 (2) ◽  
pp. 3411-3420

The development of an eco-friendly method for the production of nanomaterials is an area of significant research and commercial interest owing to its numerous applications in various disciplines. This study used a simple green synthesis approach to produce silver nanoparticles using Ocimum basilicum seed extract. The optical, structural, and morphological characteristics of the synthesized silver nanoparticles (Ag NPs) were found using UV visible absorption spectroscopy, Fourier transform infrared spectroscopy (FTIR), X-Ray diffractometer (XRD), dynamic light scattering (DLS), field emission scanning electron microscope (FE-SEM), and energy dispersive X-ray analysis (EDAX). The aqueous medium containing reduced silver ions showed maximum UV absorption at 430 nm in response to the plasmon absorbance behavior of silver nanoparticles. Synthesized nanoparticles had a spherical shape with an average particle size of 134.04 nm and a face-centered cubic (FCC) structure. Synthesized Ag NPs showed excellent free radical scavenging activity as evaluated using the DPPH method. Additionally, the green synthesized silver nanoparticles showed appreciable antimicrobial activity against gram-positive (Staphylococcus aureus) and gram-negative (Escherichia coli) bacteria compared to O. basilicum seed extract. Thus, O. basilicum seed extract can be used as a bio-reducing agent for producing silver nanoparticles and an effective way of using bioactive resources with their medicinal benefits.


2019 ◽  
Vol 4 (1) ◽  
pp. 39
Author(s):  
Renu Agarwal ◽  
SK Gupta ◽  
Sushma Srivastava ◽  
Rohit Saxena

Introduction: Ocimum basilicum (OB), a herb known for its antihypertensive, anticholinesterase and antioxidant properties was investigated for possible intraocular pressure (IOP) lowering effects in rabbits with ocular hypertension (OHT). Methods: The IOP lowering effect of a single drop of OB extract (OBE) was evaluated in oculonormotensive rabbits using three concentrations (0.25, 0.5 and 1% w/v). The concentration showing maximum IOP reduction was further evaluated in rabbits with water-loading and steroid-induced OHT. Results: IOP lowering effect of OBE 0.5% in oculonormotensive rabbit eyes was significantly greater compared to OBE 0.25% (p<0.05) but was comparable (p>0.05) to OBE 1%. Therefore, 0.5% concentration was selected for further evaluation. Pretreatment with OBE (0.5%) caused significantly lower increase in IOP after water loading amounting to 23.39% above baseline as compared to 54.00% in control eye, 15 minutes post water loading. At 60 minutes, post water loading, mean IOP rise was 95.12% and 63.58% in control and test eyes, respectively. Significant difference between the mean IOP of two eyes persisted during the 2nd hr. In rabbits with steroid induced OHT, OBE 0.5% produced a mean IOP reduction of 24.73% at the end of first hr and the mean peak IOP reduction of 31.63% was observed at the end of 2 hr. A significant difference between the IOP of test and control eyes persisted from 1 to 6 hr. Conclusions: Ocimum basilicum seed extract showed significant IOP lowering effect in rabbits with water loading and steroid induced OHT, however, its utility as an effective antiglaucoma medication needs further investigations.


2020 ◽  
Vol 21 (10) ◽  
pp. 980-989
Author(s):  
Sampath Shobana ◽  
Sunderam Veena ◽  
S.S.M. Sameer ◽  
K. Swarnalakshmi ◽  
L.A. Vishal

Aims: To evaluate the antibacterial activity of Artocarpus hirsutus mediated seed extract for nanoparticle synthesis. Background: Gastrointestinal bacteria are known for causing deadly infections in humans. They also possess multi-drug resistance and interfere with clinical treatments. Applied nanotechnology has been known to combat such infectious agents with little interference from their special attributes. Here we synthesize silver nanoparticles from Artocarpus hirsutus seed extract against two gastro-intestinal bacterial species: Enterobacter aerogenes and Listeria monocytogenes. Objective: To collect, dry, and process seeds of Artocarpus hirsutus for nanoparticle synthesis. To evaluate the morphological interaction of silver nanoparticles with bacteria. Methods: Artocarpus hirsutus seeds were collected and processed and further silver nanoparticles were synthesized by the co-precipitation method. The synthesized nanoparticles were characterized using XRD, UV, FTIR, and SEM. These nanoparticles were employed to study the antibacterial activity of nanoparticles against Enterobacter aerogenes and Listeria monocytogenes using well diffusion method. Further, morphological interaction of silver nanoparticles on bacteria was studied using SEM. Result: Silver nanoparticles were synthesized using Artocarpus hirsutus seed extract and characterization studies confirmed that silver nanoparticles were spherical in shape with 25-40 nm size. Antibacterial study exhibited better activity against Enterobacter aerogenes with a maximum zone of inhibition than on Listeria monocytogenes. SEM micrographs indicated that Enterobacter aerogenes bacteria were more susceptible to silver nanoparticles due to the absence of cell wall. Also, the size and charge of silver nanoparticles enable easy penetration of the bacterial cell wall. Conclusion: In this study, silver nanoparticles were synthesized using the seed extract of Artocarpus hirsutus for the first time exploiting the fact that Moraceae species have high phytonutrient content which aided in nanoparticle synthesis. This nanoparticle can be employed for large scale synthesis which when coupled with the pharmaceutical industry can be used to overcome the problems associated with conventional antibiotics to treat gastrointestinal bacteria.


2021 ◽  
Vol 323 ◽  
pp. 112670 ◽  
Author(s):  
Manal A. Awad ◽  
Awatif A. Hendi ◽  
Khalid Mustafa Ortashi ◽  
Batool Alzahrani ◽  
Dina Soliman ◽  
...  

2016 ◽  
Vol 6 (7) ◽  
pp. 1023-1029 ◽  
Author(s):  
Faria Zia ◽  
Nida Ghafoor ◽  
Mudassir Iqbal ◽  
Saliha Mehboob

2018 ◽  
Vol 12 (4) ◽  
pp. 526-533 ◽  
Author(s):  
Shivangi Goyal ◽  
Nidhi Gupta ◽  
Ajeet Kumar ◽  
Sreemoyee Chatterjee ◽  
Surendra Nimesh

Sign in / Sign up

Export Citation Format

Share Document