scholarly journals SUBECONOMIZER FOR IMPROVENT OF ENERGY EFFICIENCY OF CDQ PLANT MODULE

2021 ◽  
Vol 5 ◽  
pp. 12-15
Author(s):  
S.Yu Abdullin ◽  
A.O. Kachura

The article is devoted to the adjustment of the efficiency of the coke dry quenching plant (CDQP) by installing the subeconomizer in the technological scheme of coke production. A work description is presented of the subeconomizers and analyzes the advantages of the subeconomizers on the existing and new CDQP blocks. It has been emphasized that in coke production one of the most important factors is the need to work all parts of the technological chain with the full productivity. Decreased productivity or disruptions in certain areas can lead to significant losses of the final product. It is shown that the dry coke quenching plant should ensure not only stable operation of the coke battery, but also the required level of coke supply for blast furnace production. Therefore, violation of the technological regime of DCQP can critically affect the production of iron and steel. The feature of dry coke quenching technology is emphasized: the increase in productivity inevitably causes an increase of the temperature of quenched coke. It is shown that one of the ways to maintain the temperature of the quenched coke at the required level is to install a subeconomizer (SE) in the scheme of DCQP. The experience of SE "GIPROKOKS" in designing the reconstruction of existing DCQP is underlined. Data on the operation of the DCQP with the SE included in the technological scheme (which has been successfully operated for more than three years) and without it are given. SE "GIPROKOKS" studies, develops and implements new technologies that can be used in the construction of new coke plants, as well as in the reconstruction of existing ones. It is shown that the use of subeconomizers in dry coke quenching plants allows to increase the productivity of DCQP units on quenched coke by about 10 % while maintaining the required temperature and quality of the obtained coke. Keywords: dry coke quenching, temperature of quenched coke, coke yield, subeconomizer, energy efficiency. Corresponding author S.Yu. Abdullin, е-mail: [email protected]

Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3147
Author(s):  
Kiyoung Kim ◽  
Namdoo Kim ◽  
Jongryeol Jeong ◽  
Sunghwan Min ◽  
Horim Yang ◽  
...  

Many leading companies in the automotive industry have been putting tremendous effort into developing new powertrains and technologies to make their products more energy efficient. Evaluating the fuel economy benefit of a new technology in specific powertrain systems is straightforward; and, in an early concept phase, obtaining a projection of energy efficiency benefits from new technologies is extremely useful. However, when carmakers consider new technology or powertrain configurations, they must deal with a trade-off problem involving factors such as energy efficiency and performance, because of the complexities of sizing a vehicle’s powertrain components, which directly affect its energy efficiency and dynamic performance. As powertrains of modern vehicles become more complicated, even more effort is required to design the size of each component. This study presents a component-sizing process based on the forward-looking vehicle simulator “Autonomie” and the optimization algorithm “POUNDERS”; the supervisory control strategy based on Pontryagin’s Minimum Principle (PMP) assures sufficient computational system efficiency. We tested the process by applying it to a single power-split hybrid electric vehicle to determine optimal values of gear ratios and each component size, where we defined the optimization problem as minimizing energy consumption when the vehicle’s dynamic performance is given as a performance constraint. The suggested sizing process will be helpful in determining optimal component sizes for vehicle powertrain to maximize fuel efficiency while dynamic performance is satisfied. Indeed, this process does not require the engineer’s intuition or rules based on heuristics required in the rule-based process.


Heritage ◽  
2018 ◽  
Vol 1 (1) ◽  
pp. 57-87 ◽  
Author(s):  
Ahmed Khalil ◽  
Naglaa Hammouda ◽  
Khaled El-Deeb

Sustainable design is believed to stand on the opposite side of heritage conservation. This view is supported by the fact that sustainable design requires invasive measures to implement new technologies and treatments that challenge the principle of minimum intervention in heritage conservation. Another point of view sees heritage conservation as an already act of sustainable development that protects and preserves social and cultural resources such as heritage buildings and their intangible values. On the other hand, research and practice have proven that heritage buildings can be the subjects of sustainable design projects that achieve outstanding measures of sustainability and energy efficiency while not compromising the authenticity of the heritage value of the building. This sustainable conservation reaches its peak in adaptive-reuse projects of heritage buildings as reusing the building guarantees its ongoing maintenance and promotes its social, cultural and economic values to society, while giving it the ability to withstand modern users’ comfort and energy efficiency standards. This research presents a case study of the adaptive-reuse project of Villa Antoniadis in Alexandria; a heritage building built in the mid-nineteenth century and in the process of a major adaptive-reuse project. The history and significance of the building will be studied as well as the conservation values of the current project, then some proposals for interventions that could achieve more energy efficiency for the project while conserving the building are discussed. The research included a simulation of the building, using building energy modelling software for the current adaptive-reuse project as a base case, and the hypothetical application of different proposed sustainable interventions such as thermal insulation, double glazing, shading, lighting control, natural ventilation, and photovoltaic energy generation, where the energy savings potentials for each proposed intervention were studied. The simulation proved a possible reduction of 36.5% in the cooling, heating and lighting energy consumption as well as generated 74.7% of the energy required for cooling, heating and lighting from renewable energy sources.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Sen-Hui Wang ◽  
Hai-Feng Li ◽  
Yong-Jie Zhang ◽  
Zong-Shu Zou

As energy efficiency becomes increasingly important to the steel industry, the iron ore sintering process is attracting more attention since it consumes the second large amount of energy in the iron and steel making processes. The present work aims to propose a prediction model for the iron ore sintering characters. A hybrid ensemble model combined the extreme learning machine (ELM) with an improved AdaBoost.RT algorithm is developed for regression problem. First, the factors that affect solid fuel consumption, gas fuel consumption, burn-through point (BTP), and tumbler index (TI) are ranked according to the attributes weightiness sequence by applying the RReliefF method. Second, the ELM network is selected as an ensemble predictor due to its fast learning speed and good generalization performance. Third, an improved AdaBoost.RT is established to overcome the limitation of conventional AdaBoost.RT by dynamically self-adjusting the threshold value. Then, an ensemble ELM is employed by using the improved AdaBoost.RT for better precision than individual predictor. Finally, this hybrid ensemble model is applied to predict the iron ore sintering characters by production data from No. 4 sintering machine in Baosteel. The results obtained show that the proposed model is effective and feasible for the practical sintering process. In addition, through analyzing the first superior factors, the energy efficiency and sinter quality could be obviously improved.


2019 ◽  
Vol 43 (11) ◽  
pp. 5659-5677 ◽  
Author(s):  
Hongming Na ◽  
Tao Du ◽  
Wenqiang Sun ◽  
Jianfei He ◽  
Jingchao Sun ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document