Colonic Fermentation of Complex Dietary Carbohydrates in Short-Bowel Patients: No Association with Hydrogen Excretion and Fecal and Plasma Short-Chain Fatty Acids

1995 ◽  
Vol 30 (9) ◽  
pp. 897-904 ◽  
Author(s):  
I. Nordgaard ◽  
B. Stenbæk Hansen ◽  
P. Brøbech Mortensen
1996 ◽  
Vol 76 (2) ◽  
pp. 211-221 ◽  
Author(s):  
Martine S. Alles ◽  
Joseph G. A. J. Hautvast ◽  
Fokko M. Nagengast ◽  
Ralf Hartemink ◽  
Katrien M. J. Van Laere ◽  
...  

There is a need for studies on colonic fermentation in order to learn more abouthealth and diseases of the colon. The aim of the present study was to evaluate the fate of twodifferent doses of fructo-oligosaccharides (5 and 15 g/d) v. glucose in the intestine of healthy men. Twenty-four volunteers participated in a 5-weekstudy. The study was a completely balanced multiple crossover trial using an orthogonal Latin-square design for three periods, with supplement periods of 7 d and two 7 d wash-out periods. Breath samples and faecal samples were collected. There was a clear gaseous response to the consumption of fructo-oligosaccharides. The highest dose significantly increased 24 h integratedexcretion of breath H2 (P < 0·05). Breath H2 excretion after ingestion of 5 g fructo-oligosaccharides was higher than control, but did not reach significance. No effects on the total concentration of short-chain fatty acids in faeces were observed, no modification of the molar proportions of the various short-chain fatty acids was observed. The faecal pH did not change. No changes in faecal weight were observed. No fructo-oligosaccharides were recovered in faeces. We conclude that fructo-oligosaccharides added to the diet of young Western subjects are fully metabolized in the large intestine. The level of fermentation seems to be dose-dependent.


1991 ◽  
Vol 101 (6) ◽  
pp. 1497-1504 ◽  
Author(s):  
Mette Rye Clausen ◽  
Helen Bonnén ◽  
Michael Tvede ◽  
Per Brøbech Mortensen

Molecules ◽  
2019 ◽  
Vol 24 (19) ◽  
pp. 3605 ◽  
Author(s):  
Antonio Tornero-Martínez ◽  
Rubén Cruz-Ortiz ◽  
María Eugenia Jaramillo-Flores ◽  
Perla Osorio-Díaz ◽  
Sandra Victoria Ávila-Reyes ◽  
...  

Soluble or fermentable fibre has prebiotic effects that can be used in the food industry to modify the composition of microbiota species to benefit human health. Prebiotics mostly target Bifidobacterium and Lactobacillus strains, among others, which can fight against chronic diseases since colonic fermentation produces short chain fatty acids (SCFAs). The present work studied the changes produced in the fibre and polyphenolic compounds during in vitro digestion of gel (AV) and a polysaccharide extract (AP) from Aloe vera, after which, these fractions were subjected to in vitro colonic fermentation to evaluate the changes in antioxidant capacity and SCFAs production during the fermentation. The results showed that the phenolic compounds increased during digestion, but were reduced in fermentation, as a consequence, the antioxidant activity increased significantly in AV and AP after the digestion. On the other hand, during in vitro colon fermentation, the unfermented fibre of AV and AP responded as lactulose and the total volume of gas produced, which indicates the possible use of Aloe vera and polysaccharide extract as prebiotics.


1994 ◽  
Vol 92 (4) ◽  
pp. 629-635 ◽  
Author(s):  
Mercedes Gallardo ◽  
Paloma Munoz De Rueda ◽  
Angel Jesus Matilla ◽  
Isabel Maria Sanchez-Calle

Sign in / Sign up

Export Citation Format

Share Document