The effects of platelet-rich plasma on the osteogenic induction of bone marrow mesenchymal stem cells

2014 ◽  
Vol 55 (4) ◽  
pp. 304-309 ◽  
Author(s):  
Jun Zou ◽  
Chenxi Yuan ◽  
Chunshen Wu ◽  
Cheng Cao ◽  
Huilin Yang
2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Jianliang Gao ◽  
Shouyu Xiang ◽  
Xiao Wei ◽  
Ram Ishwar Yadav ◽  
Menghu Han ◽  
...  

Osteoporosis (OP) is a metabolic disease characterized by decreased bone mass and increased risk of fragility fractures, which significantly reduces the quality of life. Stem cell-based therapies, especially using bone marrow mesenchymal stem cells (BMSCs), are a promising strategy for treating OP. Nevertheless, the survival and differentiation rates of the transplanted BMSCs are low, which limits their therapeutic efficiency. Icariin (ICA) is a traditional Chinese medicine formulation that is prescribed for tonifying the kidneys. It also promotes the proliferation and osteogenic differentiation of BMSCs, although the specific mechanism remains unclear. Based on our previous research, we hypothesized that ICA promotes bone formation via the sclerostin/Wnt/β-catenin signaling pathway. We isolated rat BMSCs and transfected them with sclerostin gene (SOST) overexpressing or knockdown constructs and assessed osteogenic induction in the presence or absence of ICA. Sclerostin significantly inhibited BMSC proliferation and osteogenic differentiation, whereas the presence of ICA not only increased the number of viable BMSCs but also enhanced ALP activity and formation of calcium nodules during osteogenic induction. In addition, the osteogenic genes including Runx2, β-catenin, and c-myc as well as antioxidant factors (Prdx1, Cata, and Nqo1) were downregulated by sclerostin and restored by ICA treatment. Mechanistically, ICA exerted these effects by activating the Wnt/β-catenin pathway. In conclusion, ICA can promote the proliferation and osteogenic differentiation of BMSCs in situ and therefore may enhance the therapeutic efficiency of BMSC transplantation in OP.


2019 ◽  
Vol 39 (3) ◽  
Author(s):  
Ying Chen ◽  
Yu-Run Yang ◽  
Xiao-Liang Fan ◽  
Peng Lin ◽  
Huan Yang ◽  
...  

AbstractOsteoblast-mediated bone formation is a complex process involving various pathways and regulatory factors, including cytokines, growth factors, and hormones. Investigating the regulatory mechanisms behind osteoblast differentiation is important for bone regeneration therapy. miRNAs are known as important regulators, not only in a variety of cellular processes, but also in the pathogenesis of bone diseases. In the present study, we investigated the potential roles of miR-206 during osteoblast differentiation. We report that miR-206 expression was significantly down-regulated in human bone marrow mesenchymal stem cells (BMSCs) at days 7 and 14 during osteogenic induction. Furthermore, miR-206 overexpressing BMSCs showed attenuated alkaline phosphatase (ALP) activity, Alizarin Red staining, and osteocalcin secretion. The mRNA levels of osteogenic markers, Runx2 and Osteopontin (OPN), were significantly down-regulated in miR-206 overexpressing BMSCs. We observed that significantly increased glutamine uptake at days 7 and 14 during the osteogenic induction and inhibition of glutamine metabolism by knocking down glutaminase (GLS)-suppressed osteogenic differentiation of BMSCs. Here, we discover that miR-206 could directly bind to the 3′-UTR region of GLS mRNA, resulting in suppressed GLS expression and glutamine metabolism. Finally, restoration of GLS in miR-206 overexpressing BMSCs led to recovery of glutamine metabolism and osteogenic differentiation. In summary, these results reveal a new insight into the mechanisms of the miR-206-mediated osteogenesis through regulating glutamine metabolism. Our study may contribute to the development of therapeutic agents against bone diseases.


Coatings ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 840
Author(s):  
Francesca Salamanna ◽  
Nicolandrea Del Piccolo ◽  
Maria Sartori ◽  
Gianluca Giavaresi ◽  
Lucia Martini ◽  
...  

Bone regeneration remains one of the major clinical needs in orthopedics, and advanced and alternative strategies involving bone substitutes, cells, and growth factors (GFs) are mandatory. The purpose of this study was to evaluate whether the association of autologous bone marrow mesenchymal stem cells (BMSC), isolated by ‘one-step surgical procedure’, and activated platelet rich plasma (PRP) improves osseointegration and bone formation of a hydroxyapatite-coated titanium (Ti-HA) implant, already in clinical use, in a rabbit cancellous defect. The GFs present in plasma, in inactivated and activated PRP were also tested. At 2 weeks, histology and histomorphometry highlighted increased bone-to-implant contact (BIC) in Ti-HA combined with BMSC and PRP in comparison to Ti-HA alone and Ti-HA + PRP. The combined effect of BMSC and PRP peaked at 4 weeks where the BIC value was higher than all other treatments. At both experimental times, newly formed bone (Trabecular Bone Volume, BV/TV) in all tested treatments showed increased values in comparison to Ti-HA alone. At 4 weeks Ti-HA + PRP + BMSC showed the highest BV/TV and the highest osteoblasts number; additionally, a higher osteoid surface and bone formation rate were found in Ti-HA + BMSC + PRP than in all other treatments. Finally, the analyses of GFs revealed higher values in the activated PRP in comparison to plasma and to non-activated PRP. The study suggests that the combination of autologous activated PRP, as a carrier for BMSCs, is a promising regenerative strategy for bone formation, osseointegration, and mineralization of bone implants.


Oncotarget ◽  
2017 ◽  
Vol 8 (37) ◽  
pp. 62298-62311 ◽  
Author(s):  
Zunpeng Liu ◽  
Yue Zhu ◽  
Rui Ge ◽  
Jiajun Zhu ◽  
Xiaoning He ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document