Effects of Anti-Inflammatory Agents on the Chemical Composition of Normal and Inflamed Connective Tissue

1964 ◽  
Vol 10 (1) ◽  
pp. 281-296 ◽  
Author(s):  
H. Langgård ◽  
E. Hvidberg ◽  
L. Szporny
2020 ◽  
Vol 21 (10) ◽  
pp. 927-938 ◽  
Author(s):  
Roktim Gogoi ◽  
Rikraj Loying ◽  
Neelav Sarma ◽  
Twahira Begum ◽  
Sudin K. Pandey ◽  
...  

Background: The essential oil of methyl eugenol rich Cymbopogon khasianus Hack. was evaluated and its bioactivities were compared with pure methyl eugenol. So far, methyl eugenol rich essential oil of lemongrass was not studied for any biological activities; hence, the present study was conducted. Objective: This study examined the chemical composition of essential oil of methyl eugenol rich Cymbopogon khasianus Hack., and evaluated its antioxidant, anti-inflammatory, antimicrobial, and herbicidal properties and genotoxicity, which were compared with pure compound, methyl eugenol. Material and Methods: Methyl eugenol rich variety of Cymbopogon khasianus Hack., with registration no. INGR18037 (c.v. Jor Lab L-9) was collected from experimental farm CSIR-NEIST, Jorhat, Assam (26.7378°N, 94.1570°E). The essential oil wasobtained by hydro-distillation using a Clevenger apparatus. The chemical composition of the essential oil was evaluated using GC/MS analysis and its antioxidant (DPPH assay, reducing power assay), anti-inflammatory (Egg albumin denaturation assay), and antimicrobial (Disc diffusion assay, MIC) properties, seed germination effect and genotoxicity (Allium cepa assay) were studied and compared with pure Methyl Eugenol compound (ME). Results: Major components detected in the Essential Oil (EO) through Gas chromatography/mass spectroscopy analysis were methyl eugenol (73.17%) and β-myrcene (8.58%). A total of 35components were detected with a total identified area percentage of 98.34%. DPPH assay revealed considerable antioxidant activity of methyl eugenol rich lemongrass essential oil (IC50= 2.263 μg/mL), which is lower than standard ascorbic acid (IC50 2.58 μg/mL), and higher than standard Methyl Eugenol (ME) (IC50 2.253 μg/mL). Methyl eugenol rich lemongrass EO showed IC50 38.00 μg/mL, ME 36.44 μg/mL, and sodium diclofenac 22.76 μg/mL, in in-vitro anti-inflammatory test. Moderate antimicrobial activity towards the 8 tested microbes was shown by methyl eugenol rich lemongrass essential oil whose effectiveness against the microbes was less as compared to pure ME standard. Seed germination assay further revealed the herbicidal properties of methyl eugenol rich essential oil. Moreover, Allium cepa assay revealed moderate genotoxicity of the essential oil. Conclusion: This paper compared the antioxidant, anti-inflammatory, antimicrobial, genotoxicity and herbicidal activities of methyl eugenol rich lemongrass with pure methyl eugenol. This methyl eugenol rich lemongrass variety can be used as an alternative of methyl eugenol pure compound. Hence, the essential oil of this variety has the potential of developing cost-effective, easily available antioxidative/ antimicrobial drugs but its use should be under the safety range of methyl eugenol and needs further clinical trials.


Author(s):  
Gabriela Mastrangelo Gonçalves ◽  
Víctor de Carvalho Martins ◽  
André Romero Henrique da Costa ◽  
Thayane Ferreira da Costa Fernandes ◽  
Sidney Pacheco ◽  
...  

2014 ◽  
Vol 29 (12) ◽  
pp. 1184-1188 ◽  
Author(s):  
Opeyemi N. Avoseh ◽  
Ope-oluwa O. Oyedeji ◽  
Kayode Aremu ◽  
Benedicta N. Nkeh-Chungag ◽  
Sandile P. Songca ◽  
...  

2006 ◽  
Vol 85 (5) ◽  
pp. 452-456 ◽  
Author(s):  
M.M. Zavarella ◽  
O. Gbemi ◽  
J.D. Walters

Non-steroidal anti-inflammatory drugs (NSAIDs) are used to manage pain and inflammatory disorders. We hypothesized that gingival fibroblasts actively accumulate NSAIDs and enhance their levels in gingival connective tissue. Using fluorescence to monitor NSAID transport, we demonstrated that cultured gingival fibroblasts transport naproxen in a saturable, temperature-dependent manner with a Km of 127 μg/mL and a Vmax of 1.42 ng/min/μg protein. At steady state, the intracellular/extracellular concentration ratio was 1.9 for naproxen and 7.2 for ibuprofen. Naproxen transport was most efficient at neutral pH and was significantly enhanced upon cell treatment with TNF-α. In humans, systemically administered naproxen attained steady-state levels of 61.9 μg/mL in blood and 9.4 μg/g in healthy gingival connective tissue, while ibuprofen attained levels of 2.3 μg/mL and 1.5 μg/g, respectively. Thus, gingival fibroblasts possess transporters for NSAIDs that are up-regulated by an inflammatory mediator, but there is no evidence that they contribute to elevated NSAID levels in healthy gingiva.


Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1294
Author(s):  
Ahmed M. Abd-ElGawad ◽  
Abdelbaset M. Elgamal ◽  
Yasser A. EI-Amier ◽  
Tarik A. Mohamed ◽  
Abd El-Nasser G. El Gendy ◽  
...  

The integration of green natural chemical resources in agricultural, industrial, and pharmaceutical applications allures researchers and scientistic worldwide. Cleome amblyocarpa has been reported as an important medicinal plant. However, its essential oil (EO) has not been well studied; therefore, the present study aimed to characterize the chemical composition of the C. amblyocarpa, collected from Egypt, and assess the allelopathic, antioxidant, and anti-inflammatory activities of its EO. The EO of C. amblyocarpa was extracted by hydrodistillation and characterized via gas chromatography–mass spectrometry (GC-MS). The chemometric analysis of the EO composition of the present studied ecospecies and the other reported ecospecies was studied. The allelopathic activity of the EO was evaluated against the weed Dactyloctenium aegyptium. Additionally, antioxidant and anti-inflammatory activities were determined. Forty-eight compounds, with a prespondence of sesquiterpenes, were recorded. The major compounds were caryophyllene oxide (36.01%), hexahydrofarnesyl acetone (7.92%), alloaromadendrene epoxide (6.17%), myrtenyl acetate (5.73%), isoshyobunone (4.52%), shyobunol (4.19%), and trans-caryophyllene (3.45%). The chemometric analysis revealed inconsistency in the EO composition among various studied ecospecies, where it could be ascribed to the environmental and climatic conditions. The EO showed substantial allelopathic inhibitory activity against the germination, seedling root, and shoot growth of D. aegyptium, with IC50 values of 54.78, 57.10, and 74.07 mg L−1. Additionally, the EO showed strong antioxidant potentiality based on the IC50 values of 4.52 mg mL−1 compared to 2.11 mg mL−1 of the ascorbic acid as standard. Moreover, this oil showed significant anti-inflammation via the suppression of lipoxygenase (LOX) and cyclooxygenases (COX1, and COX2), along with membrane stabilization. Further study is recommended for analysis of the activity of pure authentic materials of the major compounds either singularly or in combination, as well as for evaluation of their mechanism(s) and modes of action as antioxidants or allelochemicals.


2017 ◽  
Vol 11 (2) ◽  
pp. 22-33 ◽  
Author(s):  
Andreza Basilio dos Santos Alves Iasmine ◽  
Maria dos Santos Simone ◽  
Frankilin Vasconcelos Mendes Raudiney ◽  
Wellinton da Silva José ◽  
de Fátima Rodrigues Maria ◽  
...  

2016 ◽  
Vol 210 ◽  
pp. 85-95 ◽  
Author(s):  
Mary H. Grace ◽  
Debora Esposito ◽  
Michael A. Timmers ◽  
Jia Xiong ◽  
Gad Yousef ◽  
...  

Química Nova ◽  
2015 ◽  
Author(s):  
Amira Arciniegas ◽  
Ana L. Pérez-Castorena ◽  
Antonio Nieto-Camacho ◽  
Jhon Ironzi Maldonado ◽  
José Luis Villaseñor ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document