scholarly journals Chemical Composition, Allelopathic, Antioxidant, and Anti-Inflammatory Activities of Sesquiterpenes Rich Essential Oil of Cleome amblyocarpa Barratte & Murb.

Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1294
Author(s):  
Ahmed M. Abd-ElGawad ◽  
Abdelbaset M. Elgamal ◽  
Yasser A. EI-Amier ◽  
Tarik A. Mohamed ◽  
Abd El-Nasser G. El Gendy ◽  
...  

The integration of green natural chemical resources in agricultural, industrial, and pharmaceutical applications allures researchers and scientistic worldwide. Cleome amblyocarpa has been reported as an important medicinal plant. However, its essential oil (EO) has not been well studied; therefore, the present study aimed to characterize the chemical composition of the C. amblyocarpa, collected from Egypt, and assess the allelopathic, antioxidant, and anti-inflammatory activities of its EO. The EO of C. amblyocarpa was extracted by hydrodistillation and characterized via gas chromatography–mass spectrometry (GC-MS). The chemometric analysis of the EO composition of the present studied ecospecies and the other reported ecospecies was studied. The allelopathic activity of the EO was evaluated against the weed Dactyloctenium aegyptium. Additionally, antioxidant and anti-inflammatory activities were determined. Forty-eight compounds, with a prespondence of sesquiterpenes, were recorded. The major compounds were caryophyllene oxide (36.01%), hexahydrofarnesyl acetone (7.92%), alloaromadendrene epoxide (6.17%), myrtenyl acetate (5.73%), isoshyobunone (4.52%), shyobunol (4.19%), and trans-caryophyllene (3.45%). The chemometric analysis revealed inconsistency in the EO composition among various studied ecospecies, where it could be ascribed to the environmental and climatic conditions. The EO showed substantial allelopathic inhibitory activity against the germination, seedling root, and shoot growth of D. aegyptium, with IC50 values of 54.78, 57.10, and 74.07 mg L−1. Additionally, the EO showed strong antioxidant potentiality based on the IC50 values of 4.52 mg mL−1 compared to 2.11 mg mL−1 of the ascorbic acid as standard. Moreover, this oil showed significant anti-inflammation via the suppression of lipoxygenase (LOX) and cyclooxygenases (COX1, and COX2), along with membrane stabilization. Further study is recommended for analysis of the activity of pure authentic materials of the major compounds either singularly or in combination, as well as for evaluation of their mechanism(s) and modes of action as antioxidants or allelochemicals.

Molecules ◽  
2021 ◽  
Vol 26 (10) ◽  
pp. 2949
Author(s):  
Juan I. Burneo ◽  
Ángel Benítez ◽  
James Calva ◽  
Pablo Velastegui ◽  
Vladimir Morocho

Chemical compositions of plants are affected by the initial nutrient contents in the soil and climatic conditions; thus, we analyzed for the first time the effects of soil and leaf nutrients on the compositions of the essential oils (EOs) of Siparuna muricata in four different localities in Ecuador. EOs were obtained by hydrodistillation and analyzed by gas chromatography/mass spectrometry (GC/MS) and a gas chromatography/flame ionization detector (GC/FID). Enantiomeric distribution by GC/MS was determined, modifying the enantiomeric separation of β-pinene, limonene, δ-elemene, β-bourbonene, cis-cadina-1 (6), 4-diene and atractylone. A total of 44 compounds were identified. The most representative for L1 were guaiol, atractylone and 4-diene; for L2, cis-cadina-1(6),4-diene and myrcene; for L3, atractylone, myrcene and germacrene B; and finally, L4 germacrene B, myrcene and cis-cadina-1(6),4-diene. Correlations between soil- leaf chemical elements such as Al, Ca, Fe, Mg, Mn, N and Si in the different localities were significant with chemical composition of the essential oil of Siparuna muricata; however, correlations between soil and leaf K, P, and Na were not significant. Cluster and NMDS analysis showed high dissimilarity values of secondary metabolites between four localities related with changes in soil- leaf nutrients. Thus, the SIMPER routine revealed that not all secondary metabolites contribute equally to establishing the differences in the four localities, and the largest contributions are due to differences in guaiol, cis-cadina-1(6),4-diene, atractylone and germacrene. Our investigation showed for the first time the influences of altitude and soil- leaf chemical elements in the chemical composition of the EOs of S. muricata.


2020 ◽  
Vol 10 (3) ◽  
pp. 193-199 ◽  
Author(s):  
Sid Ali Lamia ◽  
Brada Moussa ◽  
Fauconnier Marie-Laure ◽  
Lognay Georges

Background: Thymus fontanesii is one of the important Algerian plants, used traditionally to treat the cough and cold. In addition, it may help to protect the people against lipid peroxidation and oxidative stress and can be used as an antioxidant agent for the preservation of processed food. Objective: The aim of this study was to determine the chemical composition of Algerian Thymus fontanesii essential oil and to test its antioxidant activity. Methods: The oil was extracted by electromagnetic induction (EMI) heating assisted extraction and by hydrodistillation, and was analysed by Gas Chromatography with Flame Ionization Detector (GC/FID) and Gas Chromatography/Mass Spectrometry (GC/MS). The antioxidant activity was evaluated by three assays mainly: DPPH assay, reducing power and β-carotene/linoleic acid. Results: The yield of the essential oil was varied from 2.1 ± 0.3 to 3.1 ± 0.1% (w/w), and from 1.8 ± 0.01 to 2.6 ± 0.02% (w/w), for the electromagnetic induction heating assisted extraction and hydrodistillation, respectively. Twenty seven components were identified representing 95.6 - 99.9% of the oil. Carvacrol (54.7 ± 1.2 - 63.9 ± 1.9%) was the major compound followed by p-cymene (9.2 ± 1.2 - 17.5 ± 1.2%) and γ-terpinene (8.8 ± 0.9 - 14.9 ± 0.8%). The Thymus fontanesii essential oil was found as a significant antioxidant with IC50 values ranging from 57.3 ± 1.4 to 236.7 ± 1.4 μg/mL, which were higher than that of butylated hydroxyl toluene (BHT) choosing as reference (9.1 ± 1.2 to 67.8 ± 0.1 μg/mL). Conclusion: The obtained results encourage the use of Thymus species with bioactive compounds for further food applications.


2021 ◽  
Vol 45 (1) ◽  
pp. 137-142
Author(s):  
Hyun Ju ◽  
Heung Lim ◽  
Tae Hyun

In the present study, the chemical composition of the essential oil (EO) obtained from the flowers of Abeliophyllum distichum, commonly known as white forsythia, was examined by gas chromatography-mass spectrometry (GC/MS). Thirty-five components including epoxy linalool, methyl salicylate, linalool oxide (pyranoid), and L-linalool were identified in the EO of A. distichum flowers (AfEO). In addition, the AfEO exhibited a remarkable anti-inflammatory effect in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. We found that this anti-inflammatory effect was mediated by inhibiting the expression of proinflammatory mediators, including IL-1?, IL-6, and IL-18. Taken together, these results confirm the potential use of the AfEO as an anti-inflammatory agent for topical application.


Plants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2366
Author(s):  
Ahmed M. Abd-ELGawad ◽  
Saud L. Al-Rowaily ◽  
Abdulaziz M. Assaeed ◽  
Yasser A. EI-Amier ◽  
Abd El-Nasser G. El Gendy ◽  
...  

The Asteraceae (Compositae) family is one of the largest angiosperm families that has a large number of aromatic species. Pulicaria undulata is a well-known medicinal plant that is used in the treatment of various diseases due to its essential oil (EO). The EO of both Saudi and Egyptian ecospecies were extracted via hydrodistillation, and the chemical compounds were identified by GC–MS analysis. The composition of the EOs of Saudi and Egyptian ecospecies, as well as other reported ecospecies, were chemometrically analyzed. Additionally, the phytotoxic activity of the extracted EOs was tested against the weeds Dactyloctenium aegyptium and Bidens pilosa. In total, 80 compounds were identified from both ecospecies, of which 61 were Saudi ecospecies, with a preponderance of β-pinene, isoshyobunone, 6-epi-shyobunol, α-pinene, and α-terpinolene. However, the Egyptian ecospecies attained a lower number (34 compounds), with spathulenol, hexahydrofarnesyl acetone, α-bisabolol, and τ--cadinol as the main compounds. The chemometric analysis revealed that the studied ecospecies and other reported species were different in their composition. This variation could be attributed to the difference in the environmental and climatic conditions. The EO of the Egyptian ecospecies showed more phytotoxic activity against D. aegyptium and B. pilosa than the Saudi ecospecies. This variation might be ascribed to the difference in their major constituents. Therefore, further study is recommended for the characterization of authentic materials of these compounds as allelochemicals against various weeds, either singular or in combination.


Molecules ◽  
2020 ◽  
Vol 25 (2) ◽  
pp. 343 ◽  
Author(s):  
Ren Li ◽  
Jing-Jing Yang ◽  
Xing-Zhen Song ◽  
Yuan-Fei Wang ◽  
Richard Corlett ◽  
...  

Spondias pinnata (Linn. f.) Kurz (Anacardiaceae) is widely distributed in tropical Asia, where it is commonly used as a vegetable and fruit, and is attracting increasing research attention. In this study, we investigated the chemical composition and the cytotoxic, antimicrobial, and anti-inflammatory activities of the fruit peel essential oil of S. pinnata (EOSP), which has been consumed as a medicine and condiment in Xishuangbanna, southwest China. A total of 40 components were identified by Gas Chromatography/Mass spectrometry (GC-MS), representing 95.19% of the EOSP, with furfural (17.14%), α-terpineol (13.09%), and ethyl benzoate (9.05%) as the main constituents. EOSP has moderate cytotoxic activity against five cancer cells and obvious antimicrobial activity against five pathogenic strains. In particular, EOSP (Minimal Inhibitory and Fungicidal Concentration, MIC and MFC, 16‒32 µg/mL) showed a 32-times higher inhibition effect against Aspergillus fumigatus than the positive control Tigecycline (MIC and MBC 512‒1024 µg/mL). EOSP also showed strong anti-inflammatory activity by significantly inhibiting nitric oxide (NO) production induced by lipopolysaccharide (LPS) in RAW 264.7 cell lines at 0.08‰, with no effect on cell viability. These bioactivities of S. pinnata fruit peel validate its traditional uses and suggest that it could be a new source of natural antimicrobial and anti-inflammatory agents for food or medical industries.


2020 ◽  
Vol 75 (5-6) ◽  
pp. 171-175 ◽  
Author(s):  
Wan Mohd Nuzul Hakimi Wan Salleh ◽  
Shamsul Khamis ◽  
Muhammad Nurakmal Abdul Rahman ◽  
Mohd Azlan Nafiah

AbstractThe design of this study was developed to examine the chemical composition, anticholinesterase and anti-inflammatory inhibitory activities of the essential oil of Dipterocarpus cornutus Dyer from Malaysia. Gas chromatography (GC) and gas chromatography/mass spectrometry (GC-MS) analysis of the essential oil revealed 20 components, representing 94.6% of the oil. The major components identified were α-gurjunene (50.6%), α-selinene (8.3%), spathulenol (5.7%), and bicyclogermacrene (5.4%). Anticholinesterase and anti-inflammatory activity were also evaluated using the Ellman method and lipoxygenase (LOX) enzyme, respectively, in which the essential oil revealed weak inhibitory activity against the acetylcholinesterase (AChE) (I%: 30.2%) and butyrylcholinesterase (BChE) (I%: 32.5%), while moderate inhibitory activity was reported in the LOX (I%: 70.2%). The approach adopted in this study and results are reported for the first time which could be useful for the characterization, pharmaceutical and therapeutic applications of the essential oil from Dipterocarpus genus.


Author(s):  
Azadeh Foroughi ◽  
Pouya Pournaghi ◽  
Fariba Najafi ◽  
Akram Zangeneh ◽  
Mohammad Mahdi Zangeneh ◽  
...  

Medicinal plants are considered modern resources for producing agents that could act as alternatives to antibiotics in demeanor of antibiotic-resistant bacteria. The aim of the study was to evaluate the chemical composition and antibacterial activities of essential oil of Foeniculum vulgare (FV) against Pseudomonas aeruginosa and Bacillus subtilis. Gas chromatography mass spectrometry was done to specify chemical composion. As a screen test to detect antibacterial properties of the essential oil, agar disk and agar well diffusion methods were employed. Macrobroth tube test was performed to determinate MIC. The results indicated that the most substance found in FV essential oil was Trans-anethole (47.41 %), also the essential oil of FV with 0.007 g/ml concentration has prevented P. aeruginosa and with 0.002 g/ml concentration has prevented B. subtilis from the growth. Thus, the research represents the antibacterial effects of the medical herb on test P. aeruginosa and B. subtilis. We believe that the article provide support to the antibacterial properties of the essential oil. The results indicate the fact that the essential oil from the plant can be useful as medicinal or preservatives composition.


2020 ◽  
Vol 21 (10) ◽  
pp. 927-938 ◽  
Author(s):  
Roktim Gogoi ◽  
Rikraj Loying ◽  
Neelav Sarma ◽  
Twahira Begum ◽  
Sudin K. Pandey ◽  
...  

Background: The essential oil of methyl eugenol rich Cymbopogon khasianus Hack. was evaluated and its bioactivities were compared with pure methyl eugenol. So far, methyl eugenol rich essential oil of lemongrass was not studied for any biological activities; hence, the present study was conducted. Objective: This study examined the chemical composition of essential oil of methyl eugenol rich Cymbopogon khasianus Hack., and evaluated its antioxidant, anti-inflammatory, antimicrobial, and herbicidal properties and genotoxicity, which were compared with pure compound, methyl eugenol. Material and Methods: Methyl eugenol rich variety of Cymbopogon khasianus Hack., with registration no. INGR18037 (c.v. Jor Lab L-9) was collected from experimental farm CSIR-NEIST, Jorhat, Assam (26.7378°N, 94.1570°E). The essential oil wasobtained by hydro-distillation using a Clevenger apparatus. The chemical composition of the essential oil was evaluated using GC/MS analysis and its antioxidant (DPPH assay, reducing power assay), anti-inflammatory (Egg albumin denaturation assay), and antimicrobial (Disc diffusion assay, MIC) properties, seed germination effect and genotoxicity (Allium cepa assay) were studied and compared with pure Methyl Eugenol compound (ME). Results: Major components detected in the Essential Oil (EO) through Gas chromatography/mass spectroscopy analysis were methyl eugenol (73.17%) and β-myrcene (8.58%). A total of 35components were detected with a total identified area percentage of 98.34%. DPPH assay revealed considerable antioxidant activity of methyl eugenol rich lemongrass essential oil (IC50= 2.263 μg/mL), which is lower than standard ascorbic acid (IC50 2.58 μg/mL), and higher than standard Methyl Eugenol (ME) (IC50 2.253 μg/mL). Methyl eugenol rich lemongrass EO showed IC50 38.00 μg/mL, ME 36.44 μg/mL, and sodium diclofenac 22.76 μg/mL, in in-vitro anti-inflammatory test. Moderate antimicrobial activity towards the 8 tested microbes was shown by methyl eugenol rich lemongrass essential oil whose effectiveness against the microbes was less as compared to pure ME standard. Seed germination assay further revealed the herbicidal properties of methyl eugenol rich essential oil. Moreover, Allium cepa assay revealed moderate genotoxicity of the essential oil. Conclusion: This paper compared the antioxidant, anti-inflammatory, antimicrobial, genotoxicity and herbicidal activities of methyl eugenol rich lemongrass with pure methyl eugenol. This methyl eugenol rich lemongrass variety can be used as an alternative of methyl eugenol pure compound. Hence, the essential oil of this variety has the potential of developing cost-effective, easily available antioxidative/ antimicrobial drugs but its use should be under the safety range of methyl eugenol and needs further clinical trials.


2020 ◽  
Vol 15 (12) ◽  
pp. 1934578X2098123
Author(s):  
Peng-fei Yang ◽  
Hui Lu ◽  
Qiong-bo Wang ◽  
Zhi-wei Zhao ◽  
Qiang Liu ◽  
...  

Detailed chemical constituents of essential oil from the Pterocephalus hookeri leaves and its antimicrobial activities were investigated in this study. The essential oil, obtained by hydrodistillation, was characterized by gas chromatography-flame ionization detection and gas chromatography-mass spectrometry analyses. Among the 90 identified compounds, hexadecanoic acid (21.27%), phytol (8.03%), furfural (7.08%), oleic acid (5.25%), and phytone (4.56%) were the major components. In the antimicrobial assay, the essential oil showed strong inhibitory activities against Escherichia coli, Candida albicans, and Staphylococcus aureus with minimum inhibitory concentration values of 31.3, 62.5, and 125 µg/mL, respectively. To our knowledge, this is the first report concerning chemical composition and antimicrobial activities of the essential oil from Pterocephalus hookeri.


Author(s):  
Gabriela Mastrangelo Gonçalves ◽  
Víctor de Carvalho Martins ◽  
André Romero Henrique da Costa ◽  
Thayane Ferreira da Costa Fernandes ◽  
Sidney Pacheco ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document