Vitamin B12 status does not influence central motor conduction time in asymptomatic elderly people: A transcranial magnetic stimulation study

2014 ◽  
Vol 31 (3) ◽  
pp. 136-140 ◽  
Author(s):  
José Manuel Matamala ◽  
Carolina Nuñez ◽  
Renato J. Verdugo ◽  
Lydia Lera ◽  
Hugo Sánchez ◽  
...  
1998 ◽  
Vol 160 (1) ◽  
pp. 26-32 ◽  
Author(s):  
Akira Ofuji ◽  
Kazuo Kaneko ◽  
Toshihiko Taguchi ◽  
Yasunori Fuchigami ◽  
Hideki Morita ◽  
...  

Author(s):  
Anssam Bassem Mohy ◽  
Aqeel Kareem Hatem ◽  
Hussein Ghani Kadoori ◽  
Farqad Bader Hamdan

Abstract Background Transcranial magnetic stimulation (TMS) is a non-invasive procedure used in a small targeted region of the brain via electromagnetic induction and used diagnostically to measure the connection between the central nervous system (CNS) and skeletal muscle to evaluate the damage that occurs in MS. Objectives The study aims to investigate whether single-pulse TMS measures differ between patients with MS and healthy controls and to consider if these measures are associated with clinical disability. Patients and methods Single-pulse TMS was performed in 26 patients with MS who hand an Expanded Disability Status Scale (EDSS) score between 0 and 9.5 and in 26 normal subjects. Different TMS parameters from upper and lower limbs were investigated. Results TMS disclosed no difference in all MEP parameters between the right and left side of the upper and lower limbs in patients with MS and controls. In all patients, TMS parameters were different from the control group. Upper limb central motor conduction time (CMCT) was prolonged in MS patients with pyramidal signs. Upper and lower limb CMCT and CMCT-f wave (CMCT-f) were prolonged in patients with ataxia. Moreover, CMCT and CMCT-f were prolonged in MS patients with EDSS of 5–9.5 as compared to those with a score of 0–4.5. EDSS correlated with upper and lower limb cortical latency (CL), CMCT, and CMCT-f whereas motor evoked potential (MEP) amplitude not. Conclusion TMS yields objective data to evaluate clinical disability and its parameters correlated well with EDSS.


2021 ◽  
Vol 12 ◽  
Author(s):  
Sepehr Mamoei ◽  
Henrik Boye Jensen ◽  
Andreas Kristian Pedersen ◽  
Mikkel Karl Emil Nygaard ◽  
Simon Fristed Eskildsen ◽  
...  

Objective: Persons with multiple sclerosis (PwMS), already established as responders or non-responders to Fampridine treatment, were compared in terms of disability measures, physical and cognitive performance tests, neurophysiology, and magnetic resonance imaging (MRI) outcomes in a 1-year explorative longitudinal study.Materials and Methods: Data from a 1-year longitudinal study were analyzed. Examinations consisted of the timed 25-foot walk test (T25FW), six spot step test (SSST), nine-hole peg test (9-HPT), five times sit-to-stand test (5-STS), symbol digit modalities test (SDMT), transcranial magnetic stimulation (TMS) elicited motor evoked potentials (MEP) examining central motor conduction times (CMCT), peripheral motor conduction times (PMCT) and their amplitudes, electroneuronography (ENG) of the lower extremities, and brain structural MRI measures.Results: Forty-one responders and eight non-responders to Fampridine treatment were examined. There were no intergroup differences except for the PMCT, where non-responders had prolonged conduction times compared to responders to Fampridine. Six spot step test was associated with CMCT throughout the study. After 1 year, CMCT was further prolonged and cortical MEP amplitudes decreased in both groups, while PMCT and ENG did not change. Throughout the study, CMCT was associated with the expanded disability status scale (EDSS) and 12-item multiple sclerosis walking scale (MSWS-12), while SDMT was associated with number of T2-weighted lesions, lesion load, and lesion load normalized to brain volume.Conclusions: Peripheral motor conduction time is prolonged in non-responders to Fampridine when compared to responders. Transcranial magnetic stimulation-elicited MEPs and SDMT can be used as markers of disability progression and lesion activity visualized by MRI, respectively.Clinical Trial Registration:www.ClinicalTrials.gov, identifier: NCT03401307.


2020 ◽  
pp. 155005942095748 ◽  
Author(s):  
Tommaso Bocci ◽  
Davide Baloscio ◽  
Roberta Ferrucci ◽  
Lucia Briscese ◽  
Alberto Priori ◽  
...  

Background and Rationale Hyperkinetic movement disorders represent a heterogeneous group of diseases, different from a genetic and clinical perspective. In the past, neurophysiological approaches provided different, sometimes contradictory findings, pointing to an impaired cortical inhibition as a common electrophysiological marker. Our aim was to evaluate changes in interhemispheric communication in patients with idiopathic cervical dystonia (ICD) and spinocerebellar ataxias (SCAs). Materials and Methods Eleven patients with ICD, 7 with genetically confirmed SCA2 or SCA3, and 10 healthy volunteers were enrolled. The onset latency and duration of the ipsilateral silent period (iSPOL and iSPD, respectively), as well as the so-called transcallosal conduction time (TCT), were then recorded from the abductor pollicis brevis of the right side using an 8-shaped focal coil with wing diameters of 70 mm; all these parameters were evaluated and compared among groups. In SCAs, changes in neurophysiological measures were also correlated to the mutational load. Results iSPD was significantly shorter in patients with SCA2 and SCA3, when compared both to control and ICD ( P < .0001); iSPOL and TCT were prolonged in SCAs patients ( P < .001). Changes in iSPD, iSPOL, and TCT in SCAs are significantly correlated with the mutational load ( P = .01, P = .02, and P = .002, respectively). Discussion This is the first study to assess changes in interhemispheric communication in patients with SCAs and ICD, using a transcranial magnetic stimulation protocol. Together with previous data in Huntington’s disease, we suggest that these changes may underlie, at least in part, a common disease mechanism of polyglutamine disorders.


2019 ◽  
Vol 9 (8) ◽  
pp. 200 ◽  
Author(s):  
Mariagiovanna Cantone ◽  
Giuseppe Lanza ◽  
Alice Le Pira ◽  
Rita Barone ◽  
Giovanni Pennisi ◽  
...  

Background: Cervical myelopathy (CM) is a common cause of morbidity and disability in patients with mucopolysaccharidosis (MPS) and, therefore, early detection is crucial for the best surgical intervention and follow-up. Transcranial magnetic stimulation (TMS) non-invasively evaluates the conduction through the cortico-spinal tract, also allowing preclinical diagnosis and monitoring. Methods: Motor evoked potentials (MEPs) to TMS were recorded in a group of eight patients with MPS-related CM. Responses were obtained during mild tonic muscular activation by means of a circular coil held on the “hot spot” of the first dorsal interosseous and tibialis anterior muscles, bilaterally. The motor latency by cervical or lumbar magnetic stimulation was subtracted from the MEP cortical latency to obtain the central motor conduction time. The MEP amplitude from peak to peak to cortical stimulation and the interside difference of each measure were also calculated. Results: TMS revealed abnormal findings from both upper and lower limbs compatible with axonal damage and demyelination in six of them. Notably, a subclinical cervical spinal disease was detected before the occurrence of an overt CM in two patients, whereas TMS signs compatible with a CM of variable degree persisted despite surgery in all treated subjects. Conclusions: TMS can be viewed as an adjunct diagnostic test pending further rigorous investigations.


Author(s):  
Kerry R. Mills

Transcranial magnetic stimulation (TMS) has been exploited to advance knowledge of corticospinal physiology and, in a number of conditions, to aid diagnosis and quantify corticospinal abnormalities. The basic physics of magnetic stimulation is described along with the effects of stimulating coils with different dimensions and shape. The effects of single TMS pulses over motor cortex to cause a descending volley of D and I waves, and their effects on spinal motor neurons resulting in a motor evoked potential (MEP) are described. Guidelines for the safe use of TMS are given. Methods to estimate useful clinical measures of corticospinal function, such as threshold, MEP amplitude, central motor conduction time, silent period and input:output relation are given, as is the means to quantify corticospinal conduction using the triple stimulation technique. The clinical utility of TMS in neurodegenerations, central demyelinating diseases, stroke, spinal cord disease, movement disorders, and functional disorders is discussed.


2019 ◽  
Vol 122 (4) ◽  
pp. 1675-1684 ◽  
Author(s):  
Hang Jin Jo ◽  
Monica A. Perez

The corticospinal pathway contributes to the control of grasping in intact humans. After spinal cord injury (SCI), there is an extensive reorganization in the corticospinal pathway; however, its contribution to the control of grasping after the injury remains poorly understood. We addressed this question by using transcranial magnetic stimulation (TMS) over the hand representation of the motor cortex to elicit motor-evoked potentials (MEPs) in an intrinsic finger muscle during precision grip and power grip with the TMS coil oriented to induce currents in the brain in the latero-medial (LM) direction to activate corticospinal axons directly and in the posterior-anterior (PA) and anterior-posterior (AP) directions to activate the axon indirectly through synaptic inputs in humans with and without cervical incomplete SCI. We found prolonged MEP latencies in all coil orientations in both tasks in SCI compared with control subjects. The latencies of MEPs elicited by AP relative to LM stimuli were consistently longer during power compared with precision grip in controls and SCI subjects. In contrast, PA relative to LM MEP latencies were similar between tasks across groups. Central conduction time of AP MEPs was prolonged during power compared with precision grip in controls and SCI participants. Our results support evidence indicating that inputs activated by AP and PA currents are engaged to a different extent during fine and gross grasping in humans with and without SCI. NEW & NOTEWORTHY The mechanisms contributing to the control of hand function in humans with spinal cord injury (SCI) remain poorly understood. Here, we demonstrate for the first time that the latency of corticospinal responses elicited by transcranial magnetic stimulation anterior-posterior induced currents, relative to latero-medial currents, was prolonged during power compared with precision grip in humans with and without SCI. Gross grasping might represent a stragegy to engage networks activated by anterior-posterior currents after SCI.


Sign in / Sign up

Export Citation Format

Share Document