Seven-year follow-up of allogeneic transplant using BCNU, etoposide, cytarabine and melphalan chemotherapy in patients with Hodgkin lymphoma after autograft failure: importance of minimal residual disease

2013 ◽  
Vol 55 (6) ◽  
pp. 1281-1287 ◽  
Author(s):  
Urszula Sobol ◽  
Tulio Rodriguez ◽  
Scott Smith ◽  
Aileen Go ◽  
Ross Vimr ◽  
...  
2021 ◽  
Vol 39 (15_suppl) ◽  
pp. 8001-8001
Author(s):  
Martin F. Kaiser ◽  
Andrew Hall ◽  
Katrina Walker ◽  
Ruth De Tute ◽  
Sadie Roberts ◽  
...  

8001 Background: Patients with ultra high-risk (UHiR) newly diagnosed multiple myeloma (NDMM) and patients with plasma cell leukemia (PCL) continue to have dismal outcomes and are underrepresented in clinical trials. Recently, improved responses with anti-CD38 monoclonal antibody combination therapy have been reported for NDMM patients. We report here outcomes for NDMM UHiR and PCL patients treated in the OPTIMUM/MUKnine (NCT03188172) trial with daratumumab, cyclophosphamide, bortezomib, lenalidomide, dexamethasone (Dara-CVRd) induction, augmented high-dose melphalan (HDMEL) and ASCT. With final analysis follow-up surpassed in Feb 2021, we report here early protocol defined endpoints from induction to day 100 post ASCT. Methods: Between Sep 2017 and Jul 2019, 107 patients with UHiR NDMM by central trial genetic (≥2 high risk lesions: t(4;14), t(14;16), t(14;20), gain(1q), del(1p), del(17p)) or gene expression SKY92 (SkylineDx) profiling, or with PCL (circulating plasmablasts > 20%) were included in OPTIMUM across 39 UK hospitals. Patients received up to 6 cycles of Dara-CVRd induction, HDMEL and ASCT augmented with bortezomib, followed by Dara-VR(d) consolidation for 18 cycles and Dara-R maintenance. Primary trial endpoints are minimal residual disease (MRD) status post ASCT and progression-free survival. Secondary endpoints include response, safety and quality of life. Data is complete but subject to further data cleaning prior to conference. Results: Median follow-up for the 107 patients in the safety population was 22.2 months (95% CI: 20.6 – 23.9). Two patients died during induction due to infection. Bone marrow aspirates suitable for MRD assessment by flow cytometry (10-5 sensitivity) were available for 81% of patients at end of induction and 78% at D100 post ASCT. Responses in the intention to treat population at end of induction were 94% ORR with 22% CR, 58% VGPR, 15% PR, 1% PD, 5% timepoint not reached (TNR; withdrew, became ineligible or died) and at D100 post ASCT 83% ORR with 47% CR, 32% VGPR, 5% PR, 7% PD, 10% TNR. MRD status was 41% MRDneg, 40% MRDpos and 19% not evaluable post induction and 64% MRDneg, 14% MRDpos and 22% not evaluable at D100 post ASCT. Responses at D100 post ASCT were lower in PCL with 22% CR, 22% VGPR, 22% PR, 22% PD, 12% TNR. Most frequent grade 3/4 AEs during induction were neutropenia (21%), thrombocytopenia (12%) and infection (12%). Grade 3 neuropathy rate was 3.7%. Conclusions: This is to our knowledge the first report on a trial for UHiR NDMM and PCL investigating Dara-CVRd induction and augmented ASCT. Response rates were high in this difficult-to-treat patient population, with toxicity comparable to other induction regimens. However, some early progressions highlight the need for innovative approaches to UHiR NDMM. Clinical trial information: NCT03188172.


Blood ◽  
1996 ◽  
Vol 87 (4) ◽  
pp. 1556-1560 ◽  
Author(s):  
S Wheaton ◽  
MS Tallman ◽  
D Hakimian ◽  
L Peterson

Minimal residual disease (MRD) can be detected in bone marrow core biopsies of patients with hairy cell leukemia (HCL) after treatment with 2-chlorodeoxyadenosine (2-CdA) using immunohistochemical (IHC) techniques. The purpose of this study was to determine whether the presence of MRD predicts bone marrow relapse. We studied paraffin- embedded bone marrow core biopsies from 39 patients with HCL in complete remission (CR) 3 months after a single cycle of 2-CdA. Biopsies performed 3 months posttherapy and annually thereafter were examined by routine hematoxylin and eosin (H&E) staining and IHC using the monoclonal antibodies (MoAbs) anti-CD45RO, anti-CD20, and DBA.44. At 3 months after therapy, 5 of 39 (13%) patients had MRD detectable by IHC that was not evident by routine H&E staining. Two of the five patients (40%) with MRD at 3 months have relapsed, whereas only 2 of 27 (7%) patients with no MRD and at least 1 year of follow up relapsed (P = .11). Over the 3-year follow-up period, two additional patients developed MRD. Overall, three of six (50%) patients with MRD detected at any time after therapy have relapsed, whereas only 1 of 25 (4%) patients without MRD has relapsed (P = .016). These data suggest that the presence of MRD after treatment with 2-CdA may predict relapse.


Blood ◽  
1997 ◽  
Vol 90 (6) ◽  
pp. 2465-2470 ◽  
Author(s):  
J.F. San Miguel ◽  
A. Martı́nez ◽  
A. Macedo ◽  
M.B. Vidriales ◽  
C. López-Berges ◽  
...  

Abstract A high complete remission rate is currently achieved in patients with acute myeloid leukemia (AML). However, many patients eventually relapse due to the persistence of low numbers of residual leukemic cells that are undetectable by conventional cytomorphologic criteria (minimal residual disease [MRD]). Using immunophenotypic multiparametric flow cytometry, we have investigated in sequential studies (diagnosis and follow-up) the impact of MRD detection on the outcome of 53 AML patients that had achieved morphologic remission with standard AML protocols and displayed at diagnosis an aberrant phenotype. Patients were studied at diagnosis with a panel of 35 monoclonal antibodies in triple staining combinations for detection of aberrant or uncommon phenotypic features. According to these features, a patient's probe was custom-built at diagnosis for the identification of possible residual leukemic cells during follow-up. The level of MRD at the end of induction and intensification therapy correlated with the number of relapses and relapse-free survival (RFS). Thus, patients with more than 5 × 10−3 residual cells (5 residual cells among 1,000 normal bone marrow [BM] cells) identified as leukemic by immunophenotyping in the first remission BM showed a significant higher rate of relapse (67% v 20% for patients with less than 5 × 10−3 residual cells; P = .002) and a lower median RFS (17 months v not reached; P = .01). At the end of intensification, with a cut-off value of 2 × 10−3 leukemic cells, AML patients also separated into two distinct groups with relapse rates of 69% versus 32% (P = .02), respectively, and median RFS of 16 months versus not reached (P = .04). In addition, overall survival was also significantly related to the level of residual cells in the marrow obtained at the end of induction and particularly after intensification therapy (P = .008). Furthermore, we have explored whether residual disease was related with the functional expression of multidrug resistance (MDR-1) at diagnosis as assessed by the rhodamine-123 assay. Patients with ≥5 × 10−3 residual leukemic cells at the end of induction therapy had a significantly higher rhodamine-123 efflux (mean, 56% ± 24%) than those with less than 5 × 10−3 residual cells (mean, 32% ± 31%; P = .04). Finally, multivariate analysis showed that the number of residual cells at the end of induction or intensification therapy was the most important prognostic factor for prediction of RFS. Overall, our results show that immunophenotypical investigation of MRD strongly predicts outcome in patients with AML and that the number of residual leukemic cells correlates with multidrug resistance.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1096-1096
Author(s):  
Amos Toren ◽  
Rachel Rothman ◽  
Bella Bielorai ◽  
Malka Reichart ◽  
Ninette Amariglio ◽  
...  

Abstract The TEL/AML1 fusion gene is the most common gene rearrangement in pediatric acute lymphoblastic leukemia (ALL). Although considered to be a low risk leukemia it has a 20% risk of late relapse. The coexistence of different sub clones at diagnosis, based on polymerase chain reaction (PCR) studies of Ig/TCR gene rearrangement, was recently reported in this subtype of ALL. Their different response to chemotherapy may explain the emergence of certain sub clones at relapse, and may serve as a marker for minimal residual disease follow-up. Several chromosomal rearrangements such as t(9;22), t(8;21), inv(16) and rearrangements of the MLL gene are frequently associated with submicroscopic deletions and some of them have prognostic significance. Such deletions were not reported in t(12;21) positive ALL. Bone marrow cells from 76 pediatric patients with ALL at diagnosis were analyzed for the presence of the TEL/AML1 fusion gene by interphase fluorescence in situ hybridization (FISH). We used a new system of combined analysis enabling a very large-scale study of the cells of interest with regard to morphology, FISH and immunophenotyping. Fourteen patients were positive for the translocation. Four of them had several sub clones associated with various combinations of additional chromosomal abnormalities. The most striking was an atypical and unexpected hybridization pattern consistent with a submicroscopic deletion of the 5′ region of the AML1 breakpoint (intron2) not previously reported. We describe the use of a larger probe for AML1 (AML1/ETO) to exclude the possibility of insertion of TEL into the AML1 region without breakage and to reduce the false positivity due to optical fusion. This may enable a better monitoring of minimal residual disease in cases with submicroscopic deletion. All patients had some sub-clones with TEL deletion. Other abnormalities included trisomy and tetrasomy 21 as well as double TEL-AML1 fusion. The analysis of numerous sub-clones at presentation in these patients suggests clonal evolution at an early stage of the disease. These sub-clones may have different sensitivities to chemotherapy, and some of them may reappear at relapse. The frequency of AML1 deletion in t(12;21) in addition to other chromosomal abnormalities, is unknown. The involvement of these findings in the generation of leukemic sub clones, their prognostic significance and role in minimal residual disease follow-up deserves further studies in a large number of patients and a longer follow-up.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1093-1093
Author(s):  
Gareth Gerrard ◽  
Wayne Mitchell ◽  
Anthony Goldstone ◽  
Raj Chopra ◽  
Georgina Buck ◽  
...  

Abstract Background: Minimal Residual Disease (MRD) monitoring in BCR-ABL+ acute lymphoblastic leukaemia (ALL) is a valuable tool in the management of Philadelphia positive adult ALL due to the markedly poor prognosis engendered by this leukemia subtype. As part of the UKALLXII trial we received samples from 104 de novo adult ALL patients, 26 of which (25%) were found to be BCR-ABL+. BM and PB received at presentation and during chemotherapy or post SCT were tested for MRD as part of a modified UKALLXII trial protocol which aimed at assessing the efficacy of combined chemotherapy and Imatinib treatment and SCT. Aims: 1) To establish which sample source offers the highest level of sensitivity; 2) To determine if differences in disease level is associated with the BCR-Abl rearrangement exhibited. Methods: BM and/or PB samples were received at presentation and at monthly follow-up points and were tested by quantitative real-time PCR (QRT-PCR) using a Roche LightCycler 1.3 with the SYBR-green fluorescent detection system. The BCR-ABL transcript levels were normalised as a ratio against Abl levels. Operating procedures were adapted from the recommendations of the European Study Group for MRD in ALL. Results: 138 samples (65 PB, 73 BM) were analysed from 26 BCR-ABL+ patients: 15M, 11F; median age 43y (range 17y to 58y). 17 (65%) were found to be minor and nine (35%) were major. Ten patients have received Imatinib and nine have undergone transplant (7 allo-SCT, 2 autograft). 2 patients have relapsed and 2 have died (1 following relapse). Paired t-tests between PB and BM sample BCR-Abl transcript levels show that BM offers a significantly higher level of sensitivity with a median BCR-ABL level of 2.93 x 10−4 against 1.8 x 10−4 for PB (p= 0.0056, n=46). Baseline ABL levels show the converse (1.49 x 104 BM against 1.77 x 104 PB, p= 0.016, n=46) suggesting that the generally greater quantity of material associated with PB samples may result in higher quality RNA. BCR-Abl levels between major and minor patients show that patients exhibiting the major form have significantly higher levels of disease in both PB (median 3.1 x 10−2 major (n= 24) against 3.3x10−4 in patients exhibiting minor BCR-Abl (n=41), (p< 0.0001) and BM samples (median 2.0 x 10−2 major (n= 28) against 3.3 x 10−4 minor (n=45), (p= 0.0009). Paired sequential analysis for 11 patients with 2 or more follow-up samples confirms this observation (median 3.5 x 10−2 major (n=4) against 3.5 x 10−4 minor (n=7), (p= 0.008). Conclusions: In the QRT-PCR MRD monitoring of adult ALL BM samples offer a small but significantly higher level of sensitivity than PB samples. Patients exhibiting the major BCR-ABL rearrangement have significantly higher levels of disease than patients with the minor form. These data describing differential disease status within the BCR-ABL+ subgroup and variance due to sample type may be important in providing guidelines for patient management.


Sign in / Sign up

Export Citation Format

Share Document