Palmitate protects hepatocytes from oxidative stress and triacylglyceride accumulation by stimulation of nitric oxide synthesis in the presence of high glucose and insulin concentration

2010 ◽  
Vol 44 (12) ◽  
pp. 1425-1434 ◽  
Author(s):  
Christian Müller ◽  
Andreas Gardemann ◽  
Gerburg Keilhoff ◽  
Daniela Peter ◽  
Ingrid Wiswedel ◽  
...  
2008 ◽  
Vol 228 (3) ◽  
pp. 277-285 ◽  
Author(s):  
Chiara Riganti ◽  
Costanzo Costamagna ◽  
Sophie Doublier ◽  
Erica Miraglia ◽  
Manuela Polimeni ◽  
...  

2008 ◽  
Vol 9 (1) ◽  
pp. 33 ◽  
Author(s):  
Victor Paromov ◽  
Min Qui ◽  
Hongsong Yang ◽  
Miltorn Smith ◽  
William L Stone

Author(s):  
Susana Alcázar-Leyva ◽  
Estrella Zapata ◽  
Demetrio Bernal-Alcántara ◽  
Patricia Gorocica ◽  
Noé Alvarado-Vásquez

Abstract. Although thiamine pyrophosphate (TPP) is considered a protective agent for endothelial cells, it is still unknown if this is associated with nitric oxide (NO) synthesis. Our aim was to evaluate the synthesis of NO in endothelial cells incubated with TPP and high glucose concentrations. Endothelial cells from the umbilical cord vein from newborns (n = 20), were incubated with 5, 15 or 30 mmol/L glucose, in absence or presence of 0.625 mg/ml of TPP. Our results showed a significant increase in cell proliferation (> 40%; P < 0.05), and cell viability (> 90%; P < 0.001) after 48 h in endothelial cells cultured with glucose plus TPP. Likewise, in the presence of glucose and TPP an important rise in the consumption of glucose by the endothelial cells was observed after 24 h (> 7%; P < 0.001) and 48 h (> 10%; P < 0.05). Additionally, the levels of lactate after incubation with glucose and TPP showed only slight variations after 48 h (P < 0.05). However, these changes were clearly different from those observed in the absence of TPP. Interestingly, we found that the changes mentioned were linked with reduced levels of nitrites both at 24 h (< 171 pmol/μg protein; P < 0.001), and 48 h (< 250 pmol/μg protein; P < 0.05), which was associated with a reduced expression of mRNA of eNOS in endothelial cells incubated with TPP and high glucose. In conclusion, the presence of TPP regulates the consumption of glucose and the synthesis of NO, which would explain its protective effect in the endothelium of diabetic patients.


2001 ◽  
Vol 134 (8) ◽  
pp. 1663-1670 ◽  
Author(s):  
Roswitha Friedl ◽  
Thomas Moeslinger ◽  
Brigitte Kopp ◽  
Paul Gerhard Spieckermann

2016 ◽  
Vol 71 (1-2) ◽  
pp. 21-28 ◽  
Author(s):  
Mi Hwa Park ◽  
Jae-Won Ju ◽  
Mihyang Kim ◽  
Ji-Sook Han

AbstractEndothelial cell dysfunction is considered a major cause of vascular complications in diabetes. In the present study, we investigated the protective effect of daidzein, a natural isoflavonoid, against high-glucose–induced oxidative damage in human umbilical vein endothelial cells (HUVECs). Treatment with a high concentration of glucose (30 mM) induced oxidative stress in the endothelial cells, against which daidzein protected the cells as demonstrated by significantly increased cell viability. In addition, lipid peroxidation, intracellular reactive oxygen species (ROS) generation, and indirect nitric oxide levels induced by the high glucose treatment were significantly reduced in the presence of daidzein (0.02–0.1 mM) in a dose-dependent manner. High glucose levels induced the overexpression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and NF-κB proteins in HUVECs, which was suppressed by treatment with 0.04 mM daidzein. These findings indicate the potential of daidzein to reduce high glucose-induced oxidative stress.


Diabetes ◽  
2007 ◽  
Vol 56 (6) ◽  
pp. 1559-1568 ◽  
Author(s):  
Y.-H. Chen ◽  
S.-J. Lin ◽  
F.-Y. Lin ◽  
T.-C. Wu ◽  
C.-R. Tsao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document