Thiamine pyrophosphate diminishes nitric oxide synthesis in endothelial cells

Author(s):  
Susana Alcázar-Leyva ◽  
Estrella Zapata ◽  
Demetrio Bernal-Alcántara ◽  
Patricia Gorocica ◽  
Noé Alvarado-Vásquez

Abstract. Although thiamine pyrophosphate (TPP) is considered a protective agent for endothelial cells, it is still unknown if this is associated with nitric oxide (NO) synthesis. Our aim was to evaluate the synthesis of NO in endothelial cells incubated with TPP and high glucose concentrations. Endothelial cells from the umbilical cord vein from newborns (n = 20), were incubated with 5, 15 or 30 mmol/L glucose, in absence or presence of 0.625 mg/ml of TPP. Our results showed a significant increase in cell proliferation (> 40%; P < 0.05), and cell viability (> 90%; P < 0.001) after 48 h in endothelial cells cultured with glucose plus TPP. Likewise, in the presence of glucose and TPP an important rise in the consumption of glucose by the endothelial cells was observed after 24 h (> 7%; P < 0.001) and 48 h (> 10%; P < 0.05). Additionally, the levels of lactate after incubation with glucose and TPP showed only slight variations after 48 h (P < 0.05). However, these changes were clearly different from those observed in the absence of TPP. Interestingly, we found that the changes mentioned were linked with reduced levels of nitrites both at 24 h (< 171 pmol/μg protein; P < 0.001), and 48 h (< 250 pmol/μg protein; P < 0.05), which was associated with a reduced expression of mRNA of eNOS in endothelial cells incubated with TPP and high glucose. In conclusion, the presence of TPP regulates the consumption of glucose and the synthesis of NO, which would explain its protective effect in the endothelium of diabetic patients.

2002 ◽  
Vol 90 (5) ◽  
pp. 539-545 ◽  
Author(s):  
L. González-Santiago ◽  
S. López-Ongil ◽  
M. Rodríguez-Puyol ◽  
D. Rodríguez-Puyol

2010 ◽  
Vol 88 (3) ◽  
pp. 241-248 ◽  
Author(s):  
Garry X. Shen

Cardiovascular diseases are the predominant cause of death in patients with diabetes mellitus. Underlying mechanism for the susceptibility of diabetic patients to cardiovascular diseases remains unclear. Elevated oxidative stress was detected in diabetic patients and in animal models of diabetes. Hyperglycemia, oxidatively modified atherogenic lipoproteins, and advanced glycation end products are linked to oxidative stress in diabetes. Mitochondria are one of major sources of reactive oxygen species (ROS) in cells. Mitochondrial dysfunction increases electron leak and the generation of ROS from the mitochondrial respiratory chain (MRC). High levels of glucose and lipids impair the activities of MRC complex enzymes. NADPH oxidase (NOX) generates superoxide from NADPH in cells. Increased NOX activity was detected in diabetic patients. Hyperglycemia and hyperlipidemia increased the expression of NOX in vascular endothelial cells. Accumulated lines of evidence indicate that oxidative stress induced by excessive ROS production is linked to many processes associated with diabetic cardiovascular complications. Overproduction of ROS resulting from mitochondrial dysfunction or NOX activation is associated with uncoupling of endothelial nitric oxide synthase, which leads to reduced production of nitric oxide and endothelial-dependent vasodilation. Gene silence or inhibitor of NOX reduced oxidized or glycated LDL-induced expression of plasminogen activator inhibitor-1 in endothelial cells. Statins, hypoglycemic agents, and exercise may reduce oxidative stress in diabetic patients through the reduction of NOX activity or the improvement of mitochondrial function, which may prevent or postpone the development of cardiovascular complications.


2021 ◽  
Author(s):  
Joanne T. deKay ◽  
Joshua Carver ◽  
Bailey Shevenell ◽  
Angela M. Kosta ◽  
Sergey Tsibulnikov ◽  
...  

Abstract Background We investigated the cell surface expression of ErbB receptors on left ventricular (LV) epicardial endothelial cells and CD105+ cells obtained from cardiac biopsies of patients undergoing coronary artery bypass grafting surgery (CABG). Methods Endothelial cells and CD105+ non-endothelial cells were freshly isolated from LV epicardial biopsies obtained from 15 subjects with diabetes mellitus (DM) and 8 controls. The expression of ErbB recepotrs was examined using multiparametric flow cytometry. Human microvascular endothelial cells (HMEC-1) and LV epicardial CD105+ non-endothelial cells were used to determine the effect of high glucose on ADAM10-dependent cleavage of ErbB receptors. Results We found that diabetes mellitus (DM) and high levels of hemoglobin A1C are associated with reduced expression of ErbB2 on both endothelial cells and CD105+ non-endothelial cells. To determine if the expression of ErbB2 receptors is regulated by glucose levels, we examined the effect of high glucose in HMEC-1 and LV epicardial CD105+ non-endothelial cells, using a novel flow cytometric approach to simultaneously determine the total level, cell surface expression, and phosphorylation of ErbB2. Incubation of cells in the presence of 25 mM D-glucose resulted in decreased cell surface expression of ErbB2. We also found high expression of a disintegrin and metalloproteinase domain-containing protein 10 (ADAM10) on both endothelial cells and CD105+ non-endothelial cells. Inhibition of ADAM10 prevented the high glucose-dependent decrease in the cell surface expression of ErbB2. Conclusions We suggest that high glucose depresses ErbB receptor signaling in endothelial cells and cardiac progenitor cells via the promotion of ADAM10-dependent cleavage of ErbB2 at the cell surface, thus contributing to vascular dysfunction and adverse remodeling seen in diabetic patients.


Sign in / Sign up

Export Citation Format

Share Document