Effects of Zn deficiency, antioxidants, and low-dose radiation on diabetic oxidative damage and cell death in the testis

2012 ◽  
Vol 23 (1) ◽  
pp. 42-47 ◽  
Author(s):  
Yuguang Zhao ◽  
Hongguang Zhao ◽  
Xujie Zhai ◽  
Junying Dai ◽  
Xin Jiang ◽  
...  
2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A625-A625
Author(s):  
Natalia Reszka-Blanco ◽  
Megan Krumpoch ◽  
Michaela Mentzer ◽  
Vinod Yadav Yadav ◽  
Brianna Bannister ◽  
...  

BackgroundIntegrin αvβ8 activates TGFβ in immune cells. αvβ8 inhibitors have been shown to potentiate immune checkpoint blockade (ICB) in preclinical models [1]. Radioimmunotherapy (RIT) induces immunogenic cell death and antigen presentation, however it concurrently activates immunosuppressive pathways. Interestingly, αvβ8 immunosuppressive activity was implicated in radiotherapy resistance [2]. We have explored whether antagonizing αvβ8 overcomes the suppressive effect of TGFβ and restores anti-tumor immunity in advanced ICB and RIT resistant tumors.MethodsEfficacy was evaluated after combination treatment with low dose radiation, αvβ8 (clone C6D4) and PD-1 (clone J43) mAb in an advanced CT26 colon cancer syngeneic mouse model. Mice were treated at tumor volume of >120 mm3 and euthanized at 2,000 mm3. Flow cytometry and transcriptomic analysis were used to assess the mechanism of action. Tumor volumes are presented as mean±SEM. Statistics were performed by one-way ANOVA, or log-rank test. Bone marrow derived dendritic cell (BMdDC) cultures were isolated from C57BL/6 mice.ResultsCell death, including radiation-induced apoptosis, induced immunoregulatory and maturation program in a population of ex vivo cultured BMdDC, recently described as mregDC/DC3 [3,4]. mregDC/DC3 signature was associated with increased αvβ8 expression, suggesting a role of this integrin in inducing an immunosuppressive phenotype.A CT26 model was established to mimic the progression of late-stage tumors and was unresponsive to radiation, ICB and RIT. In CT26 implanted mice, αvβ8 is expressed on tumor stoma, and is not detectable on cancer cells. Addition of αvβ8 mAb to RIT markedly increased tumor regression (P=0.0067) and survival (P<0.0001). There were 8/10 complete responders with addition of αvβ8 mAb relative to 3/10 in RIT alone. Improved efficacy correlated with enhanced T cell activation and improved DC functionality. Consistent with a recent report in a less advanced CT26 model [5], αvβ8 mAb + radiation resulted in similar efficacy as conventional RIT although the effect was modest in more advanced tumors (Figure 1, A, B).Abstract 595 Figure 1Complete response (CR) with improved survival when αvβ8 inhibition is added to RIT in CT26 syngeneic model of colorectal cancer in an advanced, ICB and RIT unresponsive stage. (A) Effect of combination therapy with low dose radiation (small animal radiation research platform (SARRP) at 5 Gray (Gy) on the day of staging (day 10)), PD-1 mAb (10 mg/kg twice weekly for 2 weeks) and αvβ8 mAb (7 mg/kg three times weekly for 3 weeks) measured by tumor burden. 5Gy+PD-1 and 5Gy+αvβ8 has a minimal effect on tumor growth inhibition showing slight improvement relative to radiation alone (5Gy+IgG). Addition of αvβ8 antagonism (5Gy+αvβ8+PD-1) improves anti-tumor responses leading to CR in 8 of 10 mice. (B) Kaplan-Meier Curve presenting time to progression. 5Gy+IgG improved survival over monotherapy with either αvβ8 or PD1 mAb. 5Gy+αvβ8+PD-1 resulted in a profound improvement of the survival over all other treatment conditionsConclusionsInhibition of αvβ8 in combination with RIT eradicated an advanced tumor, unresponsive to the respective monotherapies or conventional RIT. The anti-tumor effect was driven by enhancement of adaptive immunity, improvement of DC function and reduced tumor tolerance. These data provide evidence that αvβ8 inhibition enhances RIT and may be effective against ICB refractory tumors.ReferencesReszka-Blanco NJ,Yadav V, Krumpoch M, Cappellucci L, Cui D, Dowling JE, et al., Inhibition of integrin αvβ8 enhances immune checkpoint induced anti-tumor immunity by acting across immunologic synapse in syngeneic models of breast cancer. AACR; Cancer Res 2021;81(13_Suppl):Abstract nr 1559.Jin S, Lee WC, Aust D, Pilarsky C, Cordes N, β8 integrin mediates pancreatic cancer cell radiochemoresistance. Mol Cancer Res. 2019; 17(10): 2126–2138.Maier B, Leader AM, Chen ST, Tung N, Chang C, LeBerichel J, et al., A conserved dendritic-cell regulatory program limits antitumour immunity. Nature. 2020; 580 (7802): 257–262.Garris CS, Arlauckas SP, Kohler RH, Trefny MP, Garren S, Piot C, Engblom C, et al., Successful anti-PD-1 cancer immunotherapy requires T cell-dendritic cell crosstalk involving the cytokines IFN-γ and IL-12. Immunity. 2018; 49(6): 1148–1161.Dodagatta-Marri E, Ma H-Y, Liang B, Li J, Meyer DS, Chen S-Y, et al., Integrin αvβ8 on T cells suppresses anti-tumor immunity in multiple models and is a promising target for tumor immunotherapy. Cell Report. 2021; 36(1): 109309Ethics ApprovalAll animal work was approved by the site Institutional Animal Care and Use Committee and was performed in conformance with the Guide for the Care and Use of Laboratory Animals within an AAALAC-accredited program. Humane euthanasia criteria were predetermined on the basis of body weight and defined clinical observations.


2009 ◽  
Vol 297 (6) ◽  
pp. E1366-E1377 ◽  
Author(s):  
Chi Zhang ◽  
Yi Tan ◽  
Weiying Guo ◽  
Cai Li ◽  
Shunzi Ji ◽  
...  

Renal protection against diabetes-induced pathogenic injuries by multiple exposures to low-dose radiation (LDR) was investigated to develop a novel approach to the prevention of renal disease for diabetic subjects. C57BL/6J mice were given multiple low-dose streptozotocin (STZ; 60 × 6 mg/kg) to produce a type 1 diabetes. Two weeks after diabetes onset, some of diabetic mice and age-matched nondiabetic mice were exposed whole body to 25 mGy X-rays every other day for 2, 4, 8, 12, and 16 wk. Diabetes caused a significant renal dysfunction, shown by time-dependent increase in urinary microalbumin (Malb) and decrease in urinary creatinine (Cre), and pathological changes, shown by significant increases in renal structural changes and PAS-positive staining. However, diabetes-induced renal dysfunction and pathological changes were significantly, albeit partially, attenuated by multiple exposures to LDR. Furthermore, LDR protection against diabetes-induced renal dysfunction and pathological changes was associated with a significant suppression of diabetes-increased systemic and renal inflammation, shown by significant increases in serum and renal TNFα, ICAM-1, IL-18, MCP-1, and PAI-1 contents. To further explore the mechanism by which LDR prevents diabetes-induced renal pathological changes, renal oxidative damage was examined by Western blotting and immunohistochemical staining for 3-nitrotyrosine and 4-hydroxynonenal. Significant increase in oxidative damage was observed in diabetic mice, but not diabetic mice, with LDR. Renal fibrosis, examined by Western blotting of connective tissue growth factor and Masson's trichrome staining, was also evident in the kidneys of diabetic mice but not diabetic mice with LDR. These results suggest that multiple exposures to LDR significantly suppress diabetes-induced systemic and renal inflammatory response and renal oxidative damage, resulting in a prevention of the renal dysfunction and fibrosis.


2007 ◽  
Vol 37 (7) ◽  
pp. 587-605 ◽  
Author(s):  
Guangwei Liu ◽  
Pingsheng Gong ◽  
Lori R. Bernstein ◽  
Yujing Bi ◽  
Shouliang Gong ◽  
...  

Autoimmunity ◽  
2009 ◽  
Vol 42 (4) ◽  
pp. 340-342 ◽  
Author(s):  
U. S. Gaipl ◽  
S. Meister ◽  
B. Lödermann ◽  
F. Rödel ◽  
R. Fietkau ◽  
...  

1992 ◽  
Vol 33 (SUPPLEMENT) ◽  
pp. 109-123 ◽  
Author(s):  
TAISEI NOMURA ◽  
MASAKATSU KINUTA ◽  
TADASHI HONGYO ◽  
HIROO NAKAJIMA ◽  
TOSHIHIRO HATANAKA

2008 ◽  
Vol 27 (2) ◽  
pp. 135-142 ◽  
Author(s):  
Guan-Jun Wang ◽  
Xiao-Kun Li ◽  
Kazuo Sakai ◽  
Lu Cai

Induction of hormesis and adaptive response by low-dose radiation (LDR) has been extensively indicated. Adaptive response induced by LDR was not only resistant to damage caused by a subsequently high-dose radiation, but also cross-resistant to other non-radiation challenges, such as chemicals. Mechanisms by which LDR induces the preventive effect on radiation- or chemical-induced tissue damage include induced or up-regulated expression of protective proteins, such as heat shock proteins and antioxidants. Since oxidative damage to tissues is a major pathogenesis of many human diseases including diabetes, this review will summarize the available data with an emphasis of the preventive effect of LDR on the development of diabetes and the therapeutic effect of LDR on diabetic cardiovascular complications. The available data indicated that pre-exposure of mice to LDR reduced the incidence of alloxan-induced diabetes, and also delayed the onset of hyperglycaemia in diabetes-prone non-obese diabetic mice. Experiments with animals indicated the effectively therapeutic effect of low-intensity or power laser (LIL or LPL) radiation on skin wound healing, which has stimulated clinical use of LIL to cure skin ulcer in diabetic patients. Mechanisms by which LDR prevents diabetes, though are unclear now, may include the induction of pancreatic antioxidants to prevent β cell from oxidative damage and immunomodulation to preserve pancreatic function. For LIL therapeutic effect on diabetic wound healing, mechanisms may include its antioxidant action, immunomodulation, cell proliferation stimulation as well as improvement of systemic and wound-regional microcirculation. Therefore, although only a few studies indicating LDR prevention of the development of diabetes, many studies have demonstrated LDR, specifically LIL, therapeutic effectiveness of diabetic wound healing. These preliminary results are really encouraging for us to further pursue the clinical implication of LDT to diabetes-related areas.


Sign in / Sign up

Export Citation Format

Share Document