HIV-1 and the Blood-Brain Barrier

2004 ◽  
pp. 62-77
2017 ◽  
Vol 79 ◽  
pp. 12-22 ◽  
Author(s):  
Ibolya E. András ◽  
Ana Leda ◽  
Marta Garcia Contreras ◽  
Luc Bertrand ◽  
Minseon Park ◽  
...  

2008 ◽  
Vol 28 (5) ◽  
pp. 528-541 ◽  
Author(s):  
Supriya D. Mahajan ◽  
Ravikumar Aalinkeel ◽  
Donald E. Sykes ◽  
Jessica L. Reynolds ◽  
B. Bindukumar ◽  
...  

2019 ◽  
Vol 25 (4) ◽  
pp. 560-577 ◽  
Author(s):  
Crystal R. Leibrand ◽  
Jason J. Paris ◽  
Austin M. Jones ◽  
Quamrun N. Masuda ◽  
Matthew S. Halquist ◽  
...  

Life Sciences ◽  
1997 ◽  
Vol 61 (9) ◽  
pp. PL119-PL125 ◽  
Author(s):  
William A. Banks ◽  
Abba J. Kastin ◽  
Victoria Akerstrom

2013 ◽  
Vol 57 (12) ◽  
pp. 6110-6121 ◽  
Author(s):  
Pedro Miguel Salcedo Gómez ◽  
Masayuki Amano ◽  
Sofiya Yashchuk ◽  
Akira Mizuno ◽  
Debananda Das ◽  
...  

ABSTRACTWe designed, synthesized, and identified two novel nonpeptidic human immunodeficiency virus type 1 (HIV-1) protease inhibitors (PIs), GRL-04810 and GRL-05010, containing the structure-based designed privileged cyclic ether-derived nonpeptide P2 ligand,bis-tetrahydrofuranylurethane (bis-THF), and a difluoride moiety, both of which are active against the laboratory strain HIV-1LAI(50% effective concentrations [EC50s], 0.0008 and 0.003 μM, respectively) with minimal cytotoxicity (50% cytotoxic concentrations [CC50s], 17.5 and 37.0 μM, respectively, in CD4+MT-2 cells). The two compounds were active against multi-PI-resistant clinical HIV-1 variants isolated from patients who had no response to various antiviral regimens. GRL-04810 and GRL-05010 also blocked the infectivity and replication of each of the HIV-1NL4-3variants selected by up to 5 μM lopinavir (EC50s, 0.03 and 0.03 μM, respectively) and atazanavir (EC50s, 0.02 and 0.04 μM, respectively). Moreover, they were active against darunavir (DRV)-resistant variants (EC50in 0.03 to 0.034 μM range for GRL-04810 and 0.026 to 0.043 μM for GRL-05010), while DRV had EC50s between 0.02 and 0.174 μM. GRL-04810 had a favorable lipophilicity profile as determined with the partition (logP) and distribution (logD) coefficients of −0.14 and −0.29, respectively. Thein vitroblood-brain barrier (BBB) permeability assay revealed that GRL-04810 and GRL-05010 may have a greater advantage in terms of crossing the BBB than the currently available PIs, with apparent penetration indexes of 47.8 × 10−6and 61.8 × 10−6cm/s, respectively. The present data demonstrate that GRL-04810 and GRL-05010 exert efficient activity against a wide spectrum of HIV-1 variantsin vitroand suggest that two fluorine atoms added to theirbis-THF moieties may well enhance their penetration across the BBB.


1992 ◽  
Vol 1 (3) ◽  
pp. 191-196 ◽  
Author(s):  
M. K. Sharief ◽  
M. Ciardi ◽  
E. J. Thompson ◽  
F. Sorice ◽  
F. Rossi ◽  
...  

The pathogenesis of brain inflammation and damage by human immunodeficiency virus (HIV) infection is unclear. Because blood–brain barrier damage and impaired cerebral perfusion are common features of HIV-1 infection, we evaluated the role of tumour necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) in mediating disruption of the blood–brain barrier. Levels of TNF-α were more elevated in cerebrospinal fluid (CSF) than in serum of HIV-1 infected patients and were mainly detected in those patients who had neurologic involvement. Intrathecal TNF-α levels correlated with signs of blood–brain barrier damage, manifested by high CSF to serum albumin quotient, and with the degree of barrier impairment. In contrast, intrathecal IL-1β levels did not correlate with blood-brain barrier damage in HIV-1 infected patients. TNF-α seems to be related to active neural inflammation and to blood–brain barrier damage. The proinflammatory effects of TNF-α in the nervous system are dissociated from those of IL-1β.


Sign in / Sign up

Export Citation Format

Share Document