The Incretin Effect: Regulation of Insulin Secretion and Glucose Tolerance by GI Hormones

Diabetes ◽  
2008 ◽  
pp. 135-150
2006 ◽  
Vol 291 (6) ◽  
pp. E1144-E1150 ◽  
Author(s):  
Elza Muscelli ◽  
Andrea Mari ◽  
Andrea Natali ◽  
Brenno D. Astiarraga ◽  
Stefania Camastra ◽  
...  

The mechanisms by which the enteroinsular axis influences β-cell function have not been investigated in detail. We performed oral and isoglycemic intravenous (IV) glucose administration in subjects with normal (NGT; n = 11) or impaired glucose tolerance (IGT; n = 10), using C-peptide deconvolution to calculate insulin secretion rates and mathematical modeling to quantitate β-cell function. The incretin effect was taken to be the ratio of oral to IV responses. In NGT, incretin-mediated insulin release [oral glucose tolerance test (OGTT)/IV ratio = 1.59 ± 0.18, P = 0.004] amounted to 18 ± 2 nmol/m2 (32 ± 4% of oral response), and its time course matched that of total insulin secretion. The β-cell glucose sensitivity (OGTT/IV ratio = 1.52 ± 0.26, P = 0.02), rate sensitivity (response to glucose rate of change, OGTT/IV ratio = 2.22 ± 0.37, P = 0.06), and glucose-independent potentiation were markedly higher with oral than IV glucose. In IGT, β-cell glucose sensitivity (75 ± 14 vs. 156 ± 28 pmol·min−1·m−2·mM−1 of NGT, P = 0.01) and potentiation were impaired on the OGTT. The incretin effect was not significantly different from NGT in terms of plasma glucagon-like peptide 1 and glucose-dependent insulinotropic polypeptide responses, total insulin secretion, and enhancement of β-cell glucose sensitivity (OGTT/IV ratio = 1.73 ± 0.24, P = NS vs. NGT). However, the time courses of incretin-mediated insulin secretion and potentiation were altered, with a predominance of glucose-induced vs. incretin-mediated stimulation. We conclude that, under physiological circumstances, incretin-mediated stimulation of insulin secretion results from an enhancement of all dynamic aspects of β-cell function, particularly β-cell glucose sensitivity. In IGT, β-cell function is inherently impaired, whereas the incretin effect is only partially affected.


2016 ◽  
Vol 310 (9) ◽  
pp. E774-E781 ◽  
Author(s):  
Benedikt A. Aulinger ◽  
Torsten P. Vahl ◽  
Ron L. Prigeon ◽  
David A. D'Alessio ◽  
Deborah A. Elder

The incretin effect reflects the actions of enteral stimuli to promote prandial insulin secretion. Impairment of this measure has been proposed as an early marker of β-cell dysfunction and described in T2D, IGT, and even obesity without IGT. We sought to determine the effects of obesity and diabetes on the incretin effect in young subjects with short exposures to metabolic abnormalities and a few other confounding medical conditions. Subjects with T2D ( n = 10; 18.0 ± 0.4 yr) or NGT, either obese ( n = 11; 17.7 ± 0.4 yr) or lean ( n = 8; 26.5 ± 2.3 yr), had OGTT and iso-iv. The incretin effect was calculated as the difference in insulin secretion during these tests and was decreased ∼50% in both the NGT-Ob and T2D subjects relative to the NGT-Ln group. The T2D group had impaired glucose tolerance and insulin secretion during the OGTT, whereas the lean and obese NGT subjects had comparable glucose excursions and β-cell function. During the iso-iv test, the NGT-Ob subjects had significantly greater insulin secretion than the NGT-Ln and T2D groups. These findings demonstrate that in young subjects with early, well-controlled T2D the incretin effect is reduced, similar to what has been described in diabetic adults. The lower incretin effect calculated for the obese subjects with NGT is driven by a disproportionately greater insulin response to iv glucose and does not affect postprandial glucose regulation. These findings confirm that the incretin effect is an early marker of impaired insulin secretion in persons with abnormal glucose tolerance but suggest that in obese subjects with NGT the incretin effect calculation can be confounded by exaggerated insulin secretion to iv glucose.


Endocrinology ◽  
2021 ◽  
Author(s):  
Jens Juul Holst ◽  
Lærke Smidt Gasbjerg ◽  
Mette Marie Rosenkilde

Abstract The incretin effect – the amplification of insulin secretion after oral versus intravenous administration of glucose as a mean to improve glucose tolerance – was suspected even before insulin was discovered, and today we know that the effect is due to the secretion of two insulinotropic peptides, glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1). But how important is it? Physiological experiments have shown that, because of the incretin effect, we can ingest increasing amounts of amounts of glucose (carbohydrates) without increasing postprandial glucose excursions, which otherwise might have severe consequences. The mechanism behind this is incretin-stimulated insulin secretion. The availability of antagonists for GLP-1 and most recently also for GIP has made it possible to directly estimate the individual contributions to postprandial insulin secretion of a) glucose itself: 26%; b) GIP: 45%; and c) GLP-1: 29%. Thus, in healthy individuals, GIP is the champion. When the action of both incretins is prevented, glucose tolerance is pathologically impaired. Thus, after 100 years of research, we now know that insulinotropic hormones from the gut are indispensable for normal glucose tolerance. The loss of the incretin effect in type 2 diabetes, therefore, contributes greatly to the impaired postprandial glucose control.


2021 ◽  
pp. 153537022110094
Author(s):  
Ibiye Owei ◽  
Nkiru Umekwe ◽  
Frankie Stentz ◽  
Jim Wan ◽  
Sam Dagogo-Jack

The ability to predict prediabetes, which affects ∼90 million adults in the US and ∼400 million adults worldwide, would be valuable to public health. Acylcarnitines, fatty acid metabolites, have been associated with type 2 diabetes risk in cross-sectional studies of mostly Caucasian subjects, but prospective studies on their link to prediabetes in diverse populations are lacking. Here, we determined the association of plasma acylcarnitines with incident prediabetes in African Americans and European Americans enrolled in a prospective study. We analyzed 45 acylcarnitines in baseline plasma samples from 70 adults (35 African-American, 35 European-American) with incident prediabetes (progressors) and 70 matched controls (non-progressors) during 5.5-year (mean 2.6 years) follow-up in the Pathobiology of Prediabetes in a Biracial Cohort (POP-ABC) study. Incident prediabetes (impaired fasting glucose/impaired glucose tolerance) was confirmed with OGTT. We measured acylcarnitines using tandem mass spectrometry, insulin sensitivity by hyperinsulinemic euglycemic clamp, and insulin secretion using intravenous glucose tolerance test. The results showed that progressors and non-progressors during POP-ABC study follow-up were concordant for 36 acylcarnitines and discordant for nine others. In logistic regression models, beta-hydroxy butyryl carnitine (C4-OH), 3-hydroxy-isovaleryl carnitine/malonyl carnitine (C5-OH/C3-DC), and octenoyl carnitine (C8:1) were the only significant predictors of incident prediabetes. The combined cut-off plasma levels of <0.03 micromol/L for C4-OH, <0.03 micromol/L for C5-OH/C3-DC, and >0.25 micromol/L for C8:1 acylcarnitines predicted incident prediabetes with 81.9% sensitivity and 65.2% specificity. Thus, circulating levels of one medium-chain and two short-chain acylcarnitines may be sensitive biomarkers for the risk of incident prediabetes among initially normoglycemic individuals with parental history of type 2 diabetes.


2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Camila Lubaczeuski ◽  
Luciana Mateus Gonçalves ◽  
Jean Franciesco Vettorazzi ◽  
Mirian Ayumi Kurauti ◽  
Junia Carolina Santos-Silva ◽  
...  

The aim of this study was to investigate the effect of subdiaphragmatic vagotomy on insulin sensitivity, secretion, and degradation in metabolic programmed mice, induced by a low-protein diet early in life, followed by exposure to a high-fat diet in adulthood. Weaned 30-day-old C57Bl/6 mice were submitted to a low-protein diet (6% protein). After 4 weeks, the mice were distributed into three groups: LP group, which continued receiving a low-protein diet; LP + HF group, which started to receive a high-fat diet; and LP + HFvag group, which underwent vagotomy and also was kept at a high-fat diet. Glucose-stimulated insulin secretion (GSIS) in isolated islets, ipGTT, ipITT, in vivo insulin clearance, and liver expression of the insulin-degrading enzyme (IDE) was accessed. Vagotomy improved glucose tolerance and reduced insulin secretion but did not alter adiposity and insulin sensitivity in the LP + HFvag, compared with the LP + HF group. Improvement in glucose tolerance was accompanied by increased insulinemia, probably due to a diminished insulin clearance, as judged by the lower C-peptide : insulin ratio, during the ipGTT. Finally, vagotomy also reduced liver IDE expression in this group. In conclusion, when submitted to vagotomy, the metabolic programmed mice showed improved glucose tolerance, associated with an increase of plasma insulin concentration as a result of insulin clearance reduction, a phenomenon probably due to diminished liver IDE expression.


Sign in / Sign up

Export Citation Format

Share Document