scholarly journals Stability analysis of an isolated microgrid with the presence of the hybrid energy storage system-based virtual synchronous generator

Author(s):  
Van Tan Nguyen, Thanh Bac Le Nguyen

Nowadays, isolated microgrids formed by distributed generators based on renewable energy sources and power electronic converters have become more and more popular. There has been a lot of research for improving the stability of microgrids in recent years particularly the virtual synchronous generator (VSG) is a topic of great interest. This paper presents the stability analysis of an isolated microgrid based on wind-photovoltaic-diesel hybrid energy sources with the introduction of a proposed VSG. The proposed VSG is based on a battery-supercapacitor (SC) hybrid energy storage system aiming to maintain the stability of the studied isolated microgrid under disturbance conditions. The time-domain simulation results of the studied system under various disturbance conditions are examined to evaluate the effectiveness of the proposed VSG. It can be concluded from the simulation results that the proposed VSG can effectively compensate power fluctuations and maintain the stability of the studied microgrid under various disturbance conditions. The simulation results also show that while the battery can handle the long-term power variations, the SC can absorb the rapid power fluctuations. Thus, the proposed VSG based on a combination of the battery and the SC could improve the battery’s lifetime and reduce the invested cost of the SC.

Author(s):  
Surindi Vidusika Wijetunge ◽  
Sajana Gunasekera ◽  
Jeewantha Gamage ◽  
Chandima Dedduwa Pathirana ◽  
Sheron Bolonne

2019 ◽  
Vol 9 (23) ◽  
pp. 5099 ◽  
Author(s):  
Darith Leng ◽  
Sompob Polmai

The application of renewable energy is stimulating since the environmental pollution and the increase in demand for global energy consumption have become the main concerns of humanity. However, the intermittent nature of renewable sources could seriously affect the frequency stability of the system which needs to be solved. In this paper, the Virtual Synchronous Generator (VSG) based on battery/supercapacitor Hybrid Energy Storage System (HESS) is proposed to handle the stochastic power output of Photovoltaic (PV). First, the power allocation methods for HESS and its comparison are illustrated. Second, the comparison of the frequency deviation suppression strategies is presented. Moreover, as the adjustable parameters of VSG (J, D) is a key superior to the conventional synchronous generator; hence, a part of this paper will be introduced a new evolutionary algorithm called Backtracking Search Optimize Algorithm (BSA) to tune the parameters of the VSG in real time. To investigate the control performance, the standalone microgrid is modeled in the MATLAB/Simulink environment. Several case studies are conducted, and the results prove the improvement of the system frequency by attenuating the maximum overshoot of frequency deviation from 50.18 Hz to 50.03 Hz.


The paper represents the design of a 100 kW three-phase network inverter for a hybrid energy storage system based on batteries and supercapacitors. The presented design is based on fast IGBT switches, provides their effective cooling and can be performed in a modular design. The inverter is designed for parallel operation with the network in bidirectional mode and island mode. The control algorithm allows for direct control of active and reactive power. The obtained simulation model and simulation results are used to calculate the inverter parameters and debug the control system. Simulation results show good performance and effectiveness of the invertor and the algorithm


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1721
Author(s):  
Ratnam Kamala Sarojini ◽  
Palanisamy Kaliannan ◽  
Yuvaraja Teekaraman ◽  
Srete Nikolovski ◽  
Hamid Reza Baghaee

The role of renewable energy sources in the power grid is increasing tremendously. However, power electronic converters are used to incorporate RES into the grid without inertia. This article recommends an improved emulated inertia control approach focused on the frequency deviation and rate of change of frequency to enhance the inertia of a power system. The required inertial power calculated from emulated inertia control is delivered through hybrid energy storage systems equipped with a proper hybrid energy storage system control. The fast-varying power calculated from emulated inertia control is linked to super-capacitor. Simultaneously, the battery handles the slow varying power by regulating the DC bus voltage proportionate to the frequency variations. Further, the stability of the emulated inertia control and hybrid energy storage system controller is validated by Bode plots. The simulation results verified the correctness of the proposed emulated inertia control and hybrid energy storage system control. The real-time simulation results with the help of OPAL-RT are presented to validate the proposed method’s feasibility.


Electric vehicles (EVs) enabled by high efficiency electric motors and controllers and powered by alternative energy sources provide the means for a clean, efficient, and environmentally friendly system. The power demanded by an EV is very variable. Hence HESS (Hybrid energy storage system) as an alternative source have been investigated with the objective of improving the storage of electrical energy. In these systems, two (or more) energy sources work together to create a superior device in comparison with a single source. In batteries and ultra-capacitors have complementary characteristics that make them attractive for a hybrid energy storage system. But the result of this combination is fundamentally related to how the sources are interconnect and controlled. Hybrid Electric Vehicle (HEV) is the most advance technology in automobile industries but long drive range in HEV is still a problem due to limited battery life. For increasing of battery life, two methods are widely used in HEV; one is with fuzzy logic-based battery management strategy and second is through improvement in regenerative braking system. Regenerative braking system used in HEV is to give backup power in deceleration mode which not only make HEV to drive longer but also increase the battery life cycle by charging of ultra-capacitor. The present work is for controlling the source of the motor present in the EV during different driving load conditions and storage of energy by implementing regenerative braking. In the proposed control action, motor speed plays a major role in switch the energy sources in HESS. To attain the objective, another controller has been designed with four math functions corresponding to the speed of the motor termed as Math Function Based (MFB) controller. The MFB controller works based on the motor’s speed and this controller creates the closed loop operation of the overall system with smooth operation between the energy sources. Thereafter the designed MFB controller combined with a Fuzzy Logic controller applied to the entire circuit at different load conditions. In the same way, MFB with Artificial Neural Network controller also applied to the circuit. Finally, comparative analysis has been done between two controllers. The motor has been applied with 6 different types of load and simulated. The MATLAB results of MFB with FLC and MFB with ANN has been attained and compared, discussed.


Sign in / Sign up

Export Citation Format

Share Document