scholarly journals Desirability Function Analysis (DFA) in Multiple Responses Optimization of Abrasive Water Jet Cutting Process

2022 ◽  
Vol 3 (1) ◽  
pp. 11-19
Author(s):  
Andrzej Perec ◽  

This paper introduces optimization of machining parameters for high-pressure abrasive water jet cutting of Hardox 500 steel utilizing desirability function analysis (DFA). The tests were carried out according to the orthogonal matrix (Taguchi) L9. The control parameters of the process such as pressure, abrasive flow rate, and traverse speed was optimized under multi-response conditions namely cutting depth and surface roughness. The optimal set of control parameters was established on the basis of the composite desirability value obtained from desirability function analysis and the significance of these parameters was determined by analysis of variance (ANOVA). The effects show that optimal sets for high cutting depth and small surface roughness is high pressure, middle abrasive flow rate, and small traverse speed. A confirmation test was also leaded to validate the test results. Results of the research have shown that machining efficiency at keeping good level quality of cut surface can be improved this approach.

2015 ◽  
Vol 22 (2) ◽  
pp. 315-326 ◽  
Author(s):  
Pavol Hreha ◽  
Agata Radvanska ◽  
Lucia Knapcikova ◽  
Grzegorz M. Królczyk ◽  
Stanisław Legutko ◽  
...  

Abstract The paper deals with a study of relations between the measured Ra, Rq, Rz surface roughness parameters, the traverse speed of cutting head v and the vibration parameters, PtP, RMS, vRa, generated during abrasive water jet cutting of the AISI 309 stainless steel. Equations for prediction of the surface roughness parameters were derived according to the vibration parameter and the traverse speed of cutting head. Accuracy of the equations is described according to the Euclidean distances. The results are suitable for an on-line control model simulating abrasive water jet cutting and machining using an accompanying physical phenomenon for the process control which eliminates intervention of the operator.


2020 ◽  
Vol 867 ◽  
pp. 182-187
Author(s):  
Teguh Dwi Widodo ◽  
Rudianto Raharjo ◽  
Muhammad Zaimi

In this paper, the effect of abrasive water jet cutting process on the surface character of medical implant SS316L was investigated. This research focuses on the effect of traverse speed during abrasive water jet cutting on the surface roughness and topography of medical implant material SS316L. In some study, it has been noted that the roughness of implant material correlates with the healing process of a sufferer in medical application. Furthermore, transverse speed has an important role in the manufacturing process that correlates directly with the ability of technic to produce a product at a definite time. Garnet was used as an abrasive material in this water jet cutting process. The process was taking place in room temperature with 3000Psi of water pressure. In this study, the surface roughness was examined at all point of depth of the cut surface in all of the transverse speed using Mitutoyo SJ 210, while the surface topography observed by Olympus BX53M optical microscope. The study results reveal that traverse speed has a significant effect on the surface roughness at the surface, middle, and bottom of the cut point. The Surface roughness increase as transverse speed.


Author(s):  
S. Saravanan ◽  
V. Vijayan ◽  
A.V. Balan ◽  
T. Sathish ◽  
A. Parthiban

This paper deals a set of studies performed on AA6063-TiC composites produced by adding 3%, 6% and 9% wt. of TiC in aluminium alloy 6063 and processed with abrasive water jet cutting that are formed with garnet abrasive of 80 mesh size. These studies are effectively meant to evaluate the surface roughness (Ra) of abrasive water jet cutting on various compositions of AA6063-TiC produced by stir casting route. Abrasive water jet cutting was carried out on cylindrical samples of various compositions of AA6063-TiC composites by varying traverse speed, stand-off distance and abrasive flow rate at three different levels. The experiments were performed using Taguchi’s L27 orthogonal array. Contribution of these parameters on the Ra was determined by ANOVA and regression analysis to optimize the process parameters for effective machining. Among the interaction effects, traverse speed and stand-off distance combinations contribute more to the Ra. The microstructures of machined surfaces were also analysed by scaning electron microscope images and F-profile plots.


2021 ◽  
Vol 2070 (1) ◽  
pp. 012218
Author(s):  
V V N Sarath ◽  
N Tamiloli

Abstract Milling AA6082T6 materials is a difficult venture because of their heterogeneity and a slew of problems, inclusive of surface roughness, that get up for the duration of the machining method and are connected to the material’s homes and slicing settings. The optimization of machining parameters is a crucial section inside the manufacturing method. This research introduces a unique approach for improving machining settings whilst milling aluminum alloy. A technique notorious as desirability function analysis (DFA) turned into worn to optimize machining parameters. DFA is a effective tool for optimizing multi-reaction problems. Milling research for aluminum alloy were completed using tungsten carbide end milling inserts in dry situations, based totally on Taguchi’s L9 orthogonal array. Multi-response issues, along with machining pressure and surface roughness, are used to optimize machining parameters including feed charge, spindle speed, and depth of reduce. person desirability values from the desirability characteristic analysis are used to create a composite desirability cost for the multi-responses. The most effective ranges of parameters had been discovered based at the composite desirability fee and substantial contribution of parameters has been determined the usage of analysis of variance.


Author(s):  
Ameer Jalil Nader ◽  
K. Shather Saad

Abrasive water jet (AWJ) is one of the most advanced and valuable non-traditional machining processes because of its massive advantages of removing metals ranging from hard to soft. This paper focused on studying the influence of jet pressure, feed rate and standoff distance on surface roughness during cutting carbon steel using abrasive water jet cutting. A surface roughness device assessed the surface roughness by performing sixteen experiments to identify the distinct texture of the surface. Based on the experiences, the best surface roughness value was 3.14 μm at jet pressure 300 MPa, standoff distance 4mm and feed rate 30 mm/min. The Taguchi method was introduced to implement the experiments and indicate the most influential process parameters on average surface roughness. The experimental results reveal that feed rate has a significant effect on average surface roughness.


2021 ◽  
Vol 58 (1) ◽  
pp. 5412-5417
Author(s):  
Prabhu Swamy N R Et al.

In this study, model equations to predict average surface roughness value of abrasive water jet cut aluminium 6061 alloy are developed. Model equations are developed considering water jet pressure, abrasive flow rate and traverse speed of the jet. Model equations help in knowing average surface roughness value on the cutting and deformation wear regions. 27 abrasive water jet cutting experiments are conducted on trapezoidal shaped aluminium 6061 block. Depth of penetration values are found for all experimental cutting conditions. Average surface roughness values are found by non-contact surface roughness tester. Surface roughness testing is carried out along the length of depth of penetration.  Low and high average surface roughness values are noticed on the cutting and deformation wear regions respectively.  Smooth surface finish and rough surface finish with striations are observed on the cutting and deformation wear regions respectively.   


Sign in / Sign up

Export Citation Format

Share Document