scholarly journals Numerical Modelling of Underground Water Pipelines exposed to Seismic Loading

2022 ◽  
Vol 9 (2) ◽  
pp. 34-44
Author(s):  
Dhuha F. Yousife ◽  
Asad H. Aldefae ◽  
Salah L. Zubaidi ◽  
Alaa N. Aldelfee

The essential factor that must get the interest by the engineers during the primary design stage of underground pipes is understanding mechanism of damage during earthquakes. The attention during design period increased due to the increment of seismic catastrophes throughout the few past decades. Therefore, finite element procedure was used for studying the seismic performance of buried pipes. PLAXIS-2D program was using for simulating the seismic performance of buried pipes using earthquake motion of single frequency. The response of both seismic vertical displacement, and acceleration of the buried pipe were simulated. The experiments of shaking table for two models of buried pipe in dry case that surrounded with sand and gravel were compared with numerical simulation results. According to the obtained results, the amplification of seismic wave raised considerably from the buried pipe base to the pipe crown, the biggest amplification occurred in the highest point of the pipe model. It can be noticed that Plaxis-2D software provides an accurate method for the prediction of seismic behaviour of buried pipe due to the obvious compatibility between the results of experiments and numerical simulation.

2018 ◽  
Vol 2018 ◽  
pp. 1-15
Author(s):  
Xiaoqing Ning ◽  
Junwu Dai ◽  
Wen Bai ◽  
Yongqiang Yang ◽  
Lulu Zhang

Cultural relics are precious properties of all humankind, the damage of which is nonresilient. In previous earthquakes, stored cultural relics have shown poor seismic performance, so effective seismic methods are urgently needed. However, due to various restrictions, traditional damping methods are not suitable for the cultural relics stored in the Palace Museum. An efficient damping method, composed of silicone damper and connecting elements, is proposed to protect these stored cultural relics. This novel damping device is very convenient to install and no change or move for the original structures is needed. It is suitable for various kinds of new and existing relic cabinets. In order to validate the effectiveness of this novel damping method, both numerical simulation and shaking table tests are carried out. Results show that this method can effectively enhance the seismic performance of relic cabinet itself and the internal cultural relics. Relic cabinets with damping devices deform significantly less than noncontrol cabinets while the inside relics also have less sliding or overturning. Overall, a damping method, designed for seismic protection of cabinet stored cultural relics, is proposed and its effectiveness has been successfully demonstrated.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Haibo Wang ◽  
Yongfeng Cheng ◽  
Zhicheng Lu ◽  
Zhubing Zhu ◽  
Shujun Zhang

Pillar electrical equipment is an important part of substations. The application of composite materials in pillar equipment can facilitate the improvement of the seismic performance of electrical equipment. In this paper, the test of elastic modulus and bending rigidity was conducted for individual composite elements in insulators and arresters, and the calculation formula for bending rigidity at the composite flange cementing connections was put forward. The numerical simulation model for the earthquake simulation shaking table test of ±1,100 kV composite pillar insulators was established, in which the bending rigidity value for the flange cementing part was obtained by the test or calculation formula. The numerical simulation results were compared with the earthquake simulation shaking table test results, the dynamic characteristics and seismic response of the model were compared, respectively, the validity of the proposed calculation formula for flange bending rigidity of composite cementing parts was verified, and a convenient and effective means was provided for calculating the seismic performance of composite electrical equipment.


2015 ◽  
Vol 1 (6) ◽  
pp. 35-40
Author(s):  
Koichi Isobe ◽  
Hiroki Sugiyama ◽  
Masatsugu Shinohara ◽  
Hiroshi Kobayashi ◽  
Yasuo Sawamura ◽  
...  

Author(s):  
Lina Zong ◽  
Feng Xu ◽  
Wei Yuan ◽  
Xiaolei Ji

Rod element and shell element were used in finite element software ABAQUS to establish dynamic elastic-plastic analysis model of the structure, the seismic performance of an irregular plane complex overrun structure numerical simulation, the structure was calculated under different input level and displacement response of the acceleration response, and analyses the force of the wear layer column and the floor of the open hole stress level. The results were compared with the shaking table test to verify the accuracy of the numerical simulation results. The results of numerical calculation were basically consistent with the experimental results, and the finite element model basically reflected the response of the structure under the simulated earthquake.


PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0247557
Author(s):  
Shuai Huang ◽  
Yuejun Lyu ◽  
Liwei Xiu ◽  
Haijun Sha

Sea ice is one of the main loads acting on a wind turbine tower in areas prone to icing, and this threatens safe working life of the wind turbine tower. In our study, a simplified calculated model of ice, wind turbine tower, and water dynamic interaction under earthquake action was proposed, which could avoid to solve a large number of nonlinear equations. Then, the seismic behaviour of the wind turbine tower with and without the influence of sea ice was investigated, and we found that the influence of the greater mass of the sea ice on the seismic response of a wind turbine tower should be considered when the wind turbine tower is designed in an area with thick ice. With the influence of the most unfavourable ice mass, the deformation and energy dissipation capacity of the wind turbine tower are decreased, and the wall thickness or stiffening rib thickness should be increased to improve the seismic performance and ductility of the wind turbine tower; the shear force and bending moment increased significantly on the wind turbine tower, and the shear force changes at the bottom of the wind turbine tower and position of action of the sea ice: attention should be paid to the wind turbine tower design at these positions. Finally, we conducted the shaking table test, and verified the rationality of our proposed simplified model.


2020 ◽  
Vol 48 (2) ◽  
pp. 190-197
Author(s):  
Kyungbeom Jeong ◽  
Satoru Shibuya ◽  
Toshinori Kawabata ◽  
Yutaka Sawada ◽  
Hiroshi Nakazawa

Sign in / Sign up

Export Citation Format

Share Document