scholarly journals PHENOLOGICAL TRENDS IN THE CALIFORNIA POPPY (ESCHSCHOLZIA CALIFORNICA): DIGITIZED HERBARIUM SPECIMENS REVEAL INTRASPECIFIC VARIATION IN THE SENSITIVITY OF FLOWERING DATE TO CLIMATE CHANGE

Madroño ◽  
2021 ◽  
Vol 68 (4) ◽  
Author(s):  
Katelin D. Pearson ◽  
Natalie L. R. Love ◽  
Tadeo Ramirez-Parada ◽  
Susan J. Mazer ◽  
Jenn M. Yost
2019 ◽  
Vol 13 (1) ◽  
pp. 87-96 ◽  
Author(s):  
Yaoqi Li ◽  
Dongting Zou ◽  
Nawal Shrestha ◽  
Xiaoting Xu ◽  
Qinggang Wang ◽  
...  

Abstract Aims Morphological variation of leaves is a key indicator of plant response to climatic change. Leaf size and shape are associated with carbon, water and energy exchange of plants with their environment. However, whether and how leaf size and shape responded to climate change over the past decades remains poorly studied. Moreover, many studies have only explored inter- but not intraspecific variation in leaf size and shape across space and time. Methods We collected >6000 herbarium specimens spanning 98 years (1910–2008) in China for seven representative dicot species and measured their leaf length and width. We explored geographical patterns and temporal trends in leaf size (i.e. leaf length, leaf width and length × width product) and shape (i.e. length/width ratio), and investigated the effects of changes in precipitation and temperature over time and space on the variation in leaf size and shape. Important Findings After accounting for the effects of sampling time, leaf size decreased with latitude for all species combined, but the relationship varied among species. Leaf size and shape were positively correlated with temperature and precipitation across space. After accounting for the effects of sampling locations, leaf size of all species combined increased with time. Leaf size changes over time were mostly positively correlated with precipitation, whereas leaf shape changes were mostly correlated with temperature. Overall, our results indicate significant spatial and temporal intraspecific variation in leaf size and shape in response to climate. Our study also demonstrates that herbarium specimens collected over a considerable period of time provide a good resource to study the impacts of climate change on plant morphological traits.


2013 ◽  
Vol 100 (7) ◽  
pp. 1381-1397 ◽  
Author(s):  
Susan J. Mazer ◽  
Steven E. Travers ◽  
Benjamin I. Cook ◽  
T. Jonathan Davies ◽  
Kjell Bolmgren ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
J. J. H. Nati ◽  
M. B. S. Svendsen ◽  
S. Marras ◽  
S. S. Killen ◽  
J. F. Steffensen ◽  
...  

AbstractHow ectothermic animals will cope with global warming is a critical determinant of the ecological impacts of climate change. There has been extensive study of upper thermal tolerance limits among fish species but how intraspecific variation in tolerance may be affected by habitat characteristics and evolutionary history has not been considered. Intraspecific variation is a primary determinant of species vulnerability to climate change, with implications for global patterns of impacts of ongoing warming. Using published critical thermal maximum (CTmax) data on 203 fish species, we found that intraspecific variation in upper thermal tolerance varies according to a species’ latitude and evolutionary history. Overall, tropical species show a lower intraspecific variation in thermal tolerance than temperate species. Notably, freshwater tropical species have a lower variation in tolerance than freshwater temperate species, which implies increased vulnerability to impacts of thermal stress. The extent of variation in CTmax among fish species has a strong phylogenetic signal, which may indicate a constraint on evolvability to rising temperatures in tropical fishes. That is, in addition to living closer to their upper thermal limits, tropical species may have higher sensitivity and lower adaptability to global warming compared to temperate counterparts. This is evidence that freshwater tropical fish communities, worldwide, are especially vulnerable to ongoing climate change.


Author(s):  
David J. Garbary ◽  
Jonathan Ferrier ◽  
Barry R. Taylor

Over 1400 flowering records of 135 species were recorded from over 125visits to more than 20 sites in Antigonish County, Nova Scotia from November2005 to January 2006, when the growing season is normally over. The speciesidentified were primarily herbaceous dicots; however, there were four speciesof woody plants (Cornus sericea, Spiraea latifolia, Symphoricarpos albusand Salix sp.) and one monocot (Allium schoenoprasum). The number ofspecies flowering declined linearly as fall progressed, as did the amountof flowering for each species. Nevertheless, over 40 species were still inflower in early December, and over 20 species flowered in January. Thefinal flowering date was 21 January, when ten species were found. Thiswork builds on a previous study in 2001, when 93 species were recordedin flower during November-December. In addition to the 30% increase inrecorded species in 2005, almost 50% of the species found in 2005 werenot recorded in 2001. This study provides an expanded baseline againstwhich changes in flowering phenology can be evaluated with respect tosubsequent regional climate change.Key Words: Antigonish, flowering, Nova Scotia, phenology, climate change


2012 ◽  
Vol 99 (4) ◽  
pp. 751-756 ◽  
Author(s):  
Zoe A. Panchen ◽  
Richard B. Primack ◽  
Tomasz Aniśko ◽  
Robert E. Lyons

2017 ◽  
Vol 215 (1) ◽  
pp. 479-488 ◽  
Author(s):  
Charles G. Willis ◽  
Edith Law ◽  
Alex C. Williams ◽  
Brian F. Franzone ◽  
Rebecca Bernardos ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document