scholarly journals A1-1: Linking Electronic Health Records across Institutions to Understand Why Women Seek Care at Multiple Sites for Breast Cancer

2014 ◽  
Vol 12 (1-2) ◽  
pp. 77-77
Author(s):  
C. Thompson ◽  
H. Luft
Circulation ◽  
2018 ◽  
Vol 137 (suppl_1) ◽  
Author(s):  
Tekeda F Ferguson ◽  
Sunayana Kumar ◽  
Denise Danos

Purpose: In conjunction with women being diagnosed earlier with breast cancer and a rapidly aging population, advances in cancer therapies have swiftly propelled cardiotoxicity as a major health concern for breast cancer patients. Frequent cardiotoxicity outcomes include: reduced left ventricular ejection fraction (LVEF), myocardial infarction, asymptomatic or hospitalized heart failure, arrhythmias, hypertension, and thromboembolism. The purpose of this study was to use an electronic health records system determine if an increased odds of heart disease was present among women with breast cancer. Methods: Data from the Research Action for Health Network (REACHnet) was used for the analysis. REACHnet is a clinical data research network that uses the common data model to extract electronic health records (EHR) from health networks in Louisiana (n=100,000).Women over the age of 30 with data (n=35,455) were included in the analysis. ICD-9 diagnosis codes were used to classify heart disease (HD) (Hypertensive HD, Ischemic HD, Pulmonary HD, and Other HD) and identify breast cancer patients. Additional EHR variables considered were smoking status, and patient vitals. Chi-square tests, crude, and adjusted logistic regression models were computed utilizing SAS 9.4. Results: Utilizing diagnoses codes our study team has estimated 28.6% of women over the age of 30 with a breast cancer diagnosis (n=816) also had a heart disease diagnosis, contrasted with 15.6% of women without a breast cancer diagnosis. Among patients with heart disease, there was no significant difference in the distribution of the type of heart disease diagnoses by breast cancer status (p=0.87). There was a 2.21 (1.89, 2.58) crude odds ratio of having a CVD diagnoses among breast cancer cases when referenced to cancer free women. After adjusting for age (30-49, 50-64, 65+), race (black/white), and comorbidities (obesity/overweight, diabetes, current smoker) there was an increased risk of heart disease (OR: 1.24 (1.05, 1.47)). Conclusion: The short-term and long-term consequences of cardiotoxicity on cancer treatment risk-to-benefit ratio, survivorship issues, and competing causes of mortality are increasingly being acknowledged. Our next efforts will include making advances in predictive risk modeling. Maximizing benefits while reducing cardiac risks needs to become a priority in oncologic management and monitoring for late-term toxic effects.


PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0244004
Author(s):  
Onintze Zaballa ◽  
Aritz Pérez ◽  
Elisa Gómez Inhiesto ◽  
Teresa Acaiturri Ayesta ◽  
Jose A. Lozano

The aim of this paper is to analyze the sequence of actions in the health system associated with a particular disease. In order to do that, using Electronic Health Records, we define a general methodology that allows us to: (i) identify the actions in the health system associated with a disease; (ii) identify those patients with a complete treatment for the disease; (iii) and discover common treatment pathways followed by the patients with a specific diagnosis. The methodology takes into account the characteristics of the EHRs, such as record heterogeneity and missing information. As an example, we use the proposed methodology to analyze breast cancer disease. For this diagnosis, 5 groups of treatments, which fit in with medical practice guidelines and expert knowledge, were obtained.


2018 ◽  
Vol 55 (6) ◽  
pp. 1492-1499 ◽  
Author(s):  
Alexander W. Forsyth ◽  
Regina Barzilay ◽  
Kevin S. Hughes ◽  
Dickson Lui ◽  
Karl A. Lorenz ◽  
...  

2021 ◽  
Vol 10 (9) ◽  
pp. 777-795
Author(s):  
Zhanglin Lin Cui ◽  
Zbigniew Kadziola ◽  
Ilya Lipkovich ◽  
Douglas E Faries ◽  
Kristin M Sheffield ◽  
...  

Aim: To predict optimal treatments maximizing overall survival (OS) and time to treatment discontinuation (TTD) for patients with metastatic breast cancer (MBC) using machine learning methods on electronic health records. Patients/methods: Adult females with HR+/HER2- MBC on first- or second-line systemic therapy were eligible. Random survival forest (RSF) models were used to predict optimal regimen classes for individual patients and each line of therapy based on baseline characteristics. Results: RSF models suggested greater use of CDK4 & 6 inhibitor-based therapies may maximize OS and TTD. RSF-predicted optimal treatments demonstrated longer OS and TTD compared with nonoptimal treatments across line of therapy (hazard ratios = 0.44∼0.79). Conclusion: RSF may help inform optimal treatment choices and improve outcomes for patients with HR+/HER2- MBC.


Sign in / Sign up

Export Citation Format

Share Document