scholarly journals A multi-objective integrated procurement, production, and distribution problem of supply chain network under fuzziness uncertainties

Pomorstvo ◽  
2021 ◽  
Vol 35 (2) ◽  
pp. 191-206
Author(s):  
Kaoutar Douaioui ◽  
Mouhsene Fri ◽  
Charif Mabrouki ◽  
El Alami Semma

In this paper, we devoted a design under uncertainty of a four-echelon supply chain network including multiple suppliers, multiple plants, multiple distributors and multiple customers. The proposed model is a bi-objective mixed integer linear programming which considers several constraints and aims to minimize the total costs including the procurement, production, storage and distribution costs as well as to maximize on-time deliveries (OTD). To bring the model closer to real-world planning problems, the objective function coefficients (e.g. procurement cost, production cost, inventory holding and transport costs) and other parameters (e.g., demand, production capacity and safety stock level), are all considered triangular fuzzy numbers. Besides, a hybrid mathematical model-based on credibility approach is constructed for the problem, i.e., expected value and chance constrained models. Moreover, to build the crisp equivalent model, we use different property of the credibility measure. The resulted crisp equivalent model is a bi-objective mixed integer linear programs (BOMILP). To transform this crisp BOMILP into a single objective mixed integer linear programs (MILP) model, we apply three different aggregation functions. Finally, numerical results are reported for a real case study to demonstrate the efficiency and applicability of the proposed model.

2021 ◽  
Author(s):  
Fatemeh Mohebalizadehgashti

Traditional logistics management has not focused on environmental concerns when designing and optimizing food supply chain networks. However, the protection of the environment is one of the main factors that should be considered based on environmental protection regulations of countries. In this thesis, environmental concerns with a mathematical model are investigated to design and configure a multi-period, multi-product, multi-echelon green meat supply chain network. A multi-objective mixed-integer linear programming formulation is developed to optimize three objectives simultaneously: minimization of the total cost, minimization of the total CO2 emissions released from transportation, and maximization of the total capacity utilization. To demonstrate the efficiency of the proposed optimization model, a green meat supply chain network for Southern Ontario, Canada is designed. A solution approach based on augmented εε-constraint method is developed for solving the proposed model. As a result, a set of Pareto-optimal solutions is obtained. Finally, the impacts of uncertainty on the proposed model are investigated using several decision trees. Optimization of a food supply chain, particularly a meat supply chain, based on multiple objectives under uncertainty using decision trees is a new approach in the literature. Keywords: Meat supply chain; Decision tree; Multi-objective programming; Mixed-integer linear programming; Augmented εε-constraint.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ehsan Mohebban-Azad ◽  
Amir-Reza Abtahi ◽  
Reza Yousefi-Zenouz

Purpose This study aims to design a reliable multi-level, multi-product and multi-period location-inventory-routing three-echelon supply chain network, which considers disruption risks and uncertainty in the inventory system. Design/methodology/approach A robust optimization approach is used to deal with the effects of uncertainty, and a mixed-integer nonlinear programming multi-objective model is proposed. The first objective function seeks to minimize inventory costs, such as ordering costs, holding costs and carrying costs. It also helps to choose one of the two modes of bearing the expenses of shortage or using the excess capacity to produce at the expense of each. The second objective function seeks to minimize the risk of disruption in distribution centers and suppliers, thereby increasing supply chain reliability. As the proposed model is an non-deterministic polynomial-time-hard model, the Lagrangian relaxation algorithm is used to solve it. Findings The proposed model is applied to a real supply chain in the aftermarket automotive service industry. The results of the model and the current status of the company under study are compared, and suggestions are made to improve the supply chain performance. Using the proposed model, companies are expected to manage the risk of supply chain disruptions and pay the lowest possible costs in the event of a shortage. They can also use reverse logistics to minimize environmental damage and use recycled goods. Originality/value In this paper, the problem definition is based on a real case; it is about the deficiencies in the after-sale services in the automobile industry. It considers the disruption risk at the first level of the supply chain, selects the supplier considering the parameters of price and disruption risk and examines surplus capacity over distributors’ nominal capacity.


2015 ◽  
Vol 781 ◽  
pp. 647-650
Author(s):  
Rojanee Homchalee ◽  
Weerapat Sessomboon

The proposed model is location-allocation model developed to design and manage the plants-to-customers ethanol supply chain in Thailand with the objective to minimize the total cost. The results showed that Thailand should have only one ethanol export depot and central depot located along wharfs in Samut Prakan province and along the highway in Non Sung district, Nakhon Ratchasima province, respectively. This model also provided the solutions on opening and expanding of production capacity of ethanol plants over time and appropriate ethanol allocation both of direct distribution and through the central depot for long term (2012-2021).


Author(s):  
Zahra Azadehranjbar ◽  
Ali Bozorgi-Amiri ◽  
Arash Zandi

This paper addresses the problem of redesigning a three-echelon supply chain network under uncertainty. Since one of the most realistic problems that supply chains are dealt with is routing of vehicles, routing constraints with a split delivery condition are considered in our proposed model. Also, the possibility of outsourcing is considered in order to satisfy demands that exceed the production capacity. Furthermore, in order to deal with the presence of uncertainty in the problem, a light robust approach is developed. The performance of the proposed model is illustrated using a simulation procedure. Sensitivity analysis on the proposed model is also presented in the paper. The results show that the proposed method has a better performance than Light Robust approach and can be used as a useful managerial tool in redesign problems.


2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Dezhi Zhang ◽  
Fangzi Zou ◽  
Shuangyan Li ◽  
Lingyun Zhou

This study considers a design problem in the supply chain network of an assembly manufacturing enterprise with economies of scale and environmental concerns. The study aims to obtain a rational tradeoff between environmental influence and total cost. A mixed-integer nonlinear programming model is developed to determine the optimal location and size of regional distribution centers (RDCs) and the investment of environmental facilities considering the effects of economies of scale and CO2 emission taxes. Numerical examples are provided to illustrate the applications of the proposed model. Moreover, comparative analysis of the related key parameters is conducted (i.e., carbon emission tax, logistics demand of customers, and economies of scale of RDC), to explore the corresponding effects on the network design of a green supply chain. Moreover, the proposed model is applied in an actual case—network design of a supply chain of an electric meter company in China. Findings show that (i) the optimal location of RDCs is affected by the demand of customers and the level of economies of scale and that (ii) the introduction of CO2 emission taxes will change the structure of a supply chain network, which will decrease CO2 emissions per unit shipment.


2021 ◽  
Author(s):  
Mohammad Ehsan Zerafati ◽  
Ali Bozorgi-Amiri ◽  
Amir-Mohammad Golmohammadi ◽  
Fariborz Jolai

Abstract Recently, due to the efficiency of cultivating microalgae, researchers and investors have paid considerable attention to the production of different biofuel products that are environmentally friendly. In this study, a two-stage deterministic model is proposed to design a microalgae-based biofuels and co-products supply chain network (MBCSCN). In the first stage, the appropriate locations for the cultivation of microalgae are identified through the analytical hierarchy process (AHP). In the second stage, a deterministic mathematical mixed integer linear programing (MILP) model is developed for a period of five years based on the criteria of economic and environmental impacts. The economic objective function maximizes the overall profit, while the environmental impacts objective function seeks to minimize the consumed fossil fuel throughout the supply chain. Then, a multi-objective MILP optimization problem is solved using the ε-constraint method. The proposed model is evaluated through a case study in Iran. It has helped to identify appropriate locations for the cultivation of microalgae and to specify the required quantity of feedstock, the species of microalgae, the required technology, and the transportation modes in each step of the supply chain.


Author(s):  
Shayan Shafiee Moghadam ◽  
Amir Aghsami ◽  
Masoud Rabbani

Designing the supply chain network is one of the significant areas in e-commerce business management. This concept plays a crucial role in e-commerce systems. For example, location-inventory-pricing-routing of an e-commerce supply chain is considered a crucial issue in this field. This field established many severe challenges in the modern world, like maintaining the supply chain for returned items, preserving customers' trust and satisfaction, and developing an applicable supply chain with cost considerations. The research proposes a multi-objective mixed integer nonlinear programming model to design a closed-loop supply chain network based on the e-commerce context. The proposed model incorporates two objectives that optimize the business's total profits and the customers' satisfaction. Then, numerous numerical examples are generated and solved using the epsilon constraint method in GAMS optimization software. The validation of the given model has been tested for the large problems via a hybrid two-level non-dominated sort genetic algorithm. Finally, some sensitivity analysis has been performed to provide some managerial insights.


2021 ◽  
Author(s):  
Fatemeh Mohebalizadehgashti

Traditional logistics management has not focused on environmental concerns when designing and optimizing food supply chain networks. However, the protection of the environment is one of the main factors that should be considered based on environmental protection regulations of countries. In this thesis, environmental concerns with a mathematical model are investigated to design and configure a multi-period, multi-product, multi-echelon green meat supply chain network. A multi-objective mixed-integer linear programming formulation is developed to optimize three objectives simultaneously: minimization of the total cost, minimization of the total CO2 emissions released from transportation, and maximization of the total capacity utilization. To demonstrate the efficiency of the proposed optimization model, a green meat supply chain network for Southern Ontario, Canada is designed. A solution approach based on augmented εε-constraint method is developed for solving the proposed model. As a result, a set of Pareto-optimal solutions is obtained. Finally, the impacts of uncertainty on the proposed model are investigated using several decision trees. Optimization of a food supply chain, particularly a meat supply chain, based on multiple objectives under uncertainty using decision trees is a new approach in the literature. Keywords: Meat supply chain; Decision tree; Multi-objective programming; Mixed-integer linear programming; Augmented εε-constraint.


2021 ◽  
pp. 0734242X2199466
Author(s):  
Naeme Zarrinpoor

This paper aims to design a supply chain network for producing double glazed glass from the recycling of waste glass. All three pillars of sustainability are taken into consideration. The economic objective tries to maximize total profits. The environmental objective considers the energy consumption, the generated waste, the greenhouse gas emission, the water consumption, and the fuel consumption of vehicles. The social objective addresses created job opportunities, the worker safety, the regional development, the worker benefit, and training hours. To solve the model, a two-stage framework based on the group best-worst method and an interactive fuzzy programming approach is developed. The proposed model is validated through a real case study based on waste glass management in the city of Shiraz. It is revealed that when sustainable development goals are approached, a great degree of improvement will be attained in environmental and social aspects without a significant decrease in the economic sustainability. The results also demonstrate that the locations of glass recycling centres are different under economic, environmental, and social pillars, and the proposed model yields an optimal system configuration with a proper satisfaction degree of all objectives. Moreover, applying the proposed solution procedure enables system designers to obtain the most desirable trade-off between different aspects of sustainability.


Sign in / Sign up

Export Citation Format

Share Document