scholarly journals Physical Visualization of Geospatial Datasets

2022 ◽  
Author(s):  
Hessam Djavaherpour ◽  
Ali Mahdavi-Amiri ◽  
Faramarz Samavati

Geospatial datasets are too complex to easily visualize and understand on a computer screen. Combining digital fabrication with a discrete global grid system (DGGS) can produce physical models of the Earth for visualizing multiresolution geospatial datasets. This proposed approach includes a mechanism for attaching a set of 3D printed segments to produce a scalable model of the Earth. The authors have produced two models that support the attachment of different datasets both in 2D and 3D format.

2020 ◽  
Vol 9 (5) ◽  
pp. 315
Author(s):  
John Hall ◽  
Lakin Wecker ◽  
Benjamin Ulmer ◽  
Faramarz Samavati

The amount of information collected about the Earth has become extremely large. With this information comes the demand for integration, processing, visualization and distribution of this data so that it can be leveraged to solve real-world problems. To address this issue, a carefully designed information structure is needed that stores all of the information about the Earth in a convenient format such that it can be easily used to solve a wide variety of problems. The idea which we explore is to create a Discrete Global Grid System (DGGS) using a Disdyakis Triacontahedron (DT) as the initial polyhedron. We have adapted a simple, closed-form, equal-area projection to reduce distortion and speed up queries. We have derived an efficient, closed-form inverse for this projection that can be used in important DGGS queries. The resulting construction is indexed using an atlas of connectivity maps. Using some simple modular arithmetic, we can then address point to cell, neighbourhood and hierarchical queries on the grid, allowing for these queries to be performed in constant time. We have evaluated the angular distortion created by our DGGS by comparing it to a traditional icosahedron DGGS using a similar projection. We demonstrate that our grid reduces angular distortion while allowing for real-time rendering of data across the globe.


2020 ◽  
Author(s):  
Matthew Walker ◽  
Stuart Humphries ◽  
Rudi Schuech

AbstractThe velocity of settling particles is an important determinant of distribution in extinct and extant species with passive dispersal mechanisms, such as plants, corals, and phytoplankton. Here we adapt dynamic scaling, borrowed from engineering, to determine settling velocities. Dynamic scaling leverages physical models with relevant dimensionless numbers matched to achieve similar dynamics to the original object. Previous studies have used flumes, wind tunnels, or towed models to examine fluid flows around objects with known velocities. Our novel application uses free-falling models to determine the unknown sinking velocities of planktonic foraminifera – organisms important to our understanding of the Earth’s current and historic climate. Using enlarged 3D printed models of microscopic foraminifera tests, sunk in viscous mineral oil to match their Reynolds numbers and drag coefficients, we predict sinking velocities of real tests in seawater. This method can be applied to study other settling particles such as plankton, spores, or seeds.Summary StatementWe developed a novel method to determine the sinking velocities of biologically important microscale particles using 3D printed scale models.


Author(s):  
Xingjian Wei ◽  
Li Zeng ◽  
Zhijian Pei

Medical models are physical models of human or animal anatomical structures such as skull and heart. Such models are used in simulation and planning of complex surgeries. They can also be utilized for anatomy teaching in medical curriculum. Traditionally, medical models are fabricated by paraffin wax or silicone casting. However, this method is time-consuming, of low quality, and not suitable for personalization. Recently, 3D printing technologies are used to fabricate medical models. Various applications of 3D printed medical models in surgeries and anatomy teaching have been reported, and their advantages over traditional medical models have been well-documented. However, 3D printing of medical models bears some special challenges compared to industrial applications of 3D printing. This paper reviews more than 50 publications on 3D printing of medical models between 2006 and 2016, and discusses knowledge gaps and potential research directions in this field.


2018 ◽  
Vol 19 (4) ◽  
pp. 1199-1215 ◽  
Author(s):  
Melissa A. Babilonia-Rosa ◽  
H. Kenny Kuo ◽  
Maria T. Oliver-Hoyo

Noncovalent interactions determine the three-dimensional structure of macromolecules and the binding interactions between molecules. Students struggle to understand noncovalent interactions and how they relate to structure–function relationships. Additionally, students’ difficulties translating from two-dimensional representations to three-dimensional representations add another layer of complexity found in macromolecules. Therefore, we developed instructional resources that use 3D physical models to target student understanding of noncovalent interactions of small molecules and macromolecules. To this effect, we monitored indicators of knowledge integration as evidenced in student-generated drawings. Analysis of the drawings revealed that students were able to incorporate relevant conceptual features into their drawings from different sources as well as present their understanding from different perspectives.


Author(s):  
Janice de Freitas Pires ◽  
Luisa Dalla Vecchia ◽  
Adriane Almeida da Silva Borda

Teaching descriptive geometry, in the context of this study, is characterized by the continuous investment in recognizing digital representation technologies which can enhance the didactic activities in architectural training. This study describes this trajectory which includes the use of virtual reality, augmented reality and parametric modelling, as well as freehand drawing and the production of physical models both by automating the unfolding process and by digital fabrication processes of 3D printing and laser cutting. In addition to questioning the relevance and sustainability of the infrastructure needed to ensure the continuation of this trajectory, the potentialities identified in each of the learning activities that have been structure, are shown. Although these potentialities are specific to this context, it is considered that this type of record contributes to understand the issues being faced in teaching practices.


Author(s):  
Alejandro Bonnet De León ◽  
Jose Luis Saorin ◽  
Jorge De la Torre-Cantero ◽  
Cecile Meier ◽  
María Cabrera-Pardo

<p class="0abstract"><span lang="EN-US">One of the drawbacks of using 3D printers in educational environments is that the creation time of each piece is high and therefore it is difficult to manufacture at least one piece for each student. This aspect is important so that each student can feel part of the manufacturing process. To achieve this, 3D printers can be used, not to make pieces, but to make the molds that students use to create replicas. On the other hand, for a mold to be used to make several pieces, it is convenient to make it with flexible material. However, most used material for 3D printers (PLA) is very rigid. To solve this problem, this article designs a methodology that allows the use of low-cost 3D printers (most common in school environments) with flexible material so that each mold can be used to manufacture parts for several students. To print flexible material with low-cost printers, it is necessary to adapt the machine and the print parameters to work properly. This article analyzes the changes to be made with a low cost 3D printer and validates the use of molds in school environments. A pilot test has been carried out with 8 students of the subject of Typography, in the School of Art and Superior of Design of Tenerife. During the activity, the students carried out the process of designing a typography and creating digital molds for 3D printing with flexible material. The designs were made using free 3D modeling programs and low-cost technologies.</span></p>


2020 ◽  
Vol 9 (4) ◽  
pp. 233 ◽  
Author(s):  
Benjamin Ulmer ◽  
John Hall ◽  
Faramarz Samavati

Geospatial sensors are generating increasing amounts of three-dimensional (3D) data. While Discrete Global Grid Systems (DGGS) are a useful tool for integrating geospatial data, they provide no native support for 3D data. Several different 3D global grids have been proposed; however, these approaches are not consistent with state-of-the-art DGGSs. In this paper, we propose a general method that can extend any DGGS to the third dimension to operate as a 3D DGGS. This extension is done carefully to ensure any valid DGGS can be supported, including all refinement factors and non-congruent refinement. We define encoding, decoding, and indexing operations in a way that splits responsibility between the surface DGGS and the 3D component, which allows for easy transference of data between the 2D and 3D versions of a DGGS. As a part of this, we use radial mapping functions that serve a similar purpose as polyhedral projection in a conventional DGGS. We validate our method by creating three different 3D DGGSs tailored for three specific use cases. These use cases demonstrate our ability to quickly generate 3D global grids while achieving desired properties such as support for large ranges of altitudes, volume preservation between cells, and custom cell aspect ratio.


2019 ◽  
Vol 48 (6) ◽  
pp. 1712-1740 ◽  
Author(s):  
Alexander Kamyshny ◽  
Shlomo Magdassi

This review describes recent developments in the field of conductive nanomaterials and their application in 2D and 3D printed flexible electronics, with particular emphasis on inks based on metal nanoparticles and nanowires, carbon nanotubes, and graphene sheets.


Sign in / Sign up

Export Citation Format

Share Document