scholarly journals The Effect of Publication Bias on the Assessment of Heterogeneity

2017 ◽  
Author(s):  
Hilde Augusteijn ◽  
Robbie Cornelis Maria van Aert ◽  
Marcel A. L. M. van Assen

One of the main goals of meta-analysis is to test and estimate the heterogeneity of effect size. We examined the effect of publication bias on the Q-test and assessments of heterogeneity, as a function of true heterogeneity, publication bias, true effect size, number of studies, and variation of sample sizes. The expected values of heterogeneity measures H2 and I2 were analytically derived, and the power and the type I error rate of the Q-test were examined in a Monte-Carlo simulation study. Our results show that the effect of publication bias on the Q-test and assessment of heterogeneity is large, complex, and non-linear. Publication bias can both dramatically decrease and increase heterogeneity. Extreme homogeneity can occur even when the population heterogeneity is large. Particularly if the number of studies is large and population effect size is small, publication bias can cause both extreme type I error rates and power of the Q-test close to 0 or 1. We therefore conclude that the Q-test of homogeneity and heterogeneity measures H2 and I2 are generally not valid in assessing and testing heterogeneity when publication bias is present, especially when the true effect size is small and the number of studies is large. We introduce a web application, Q-sense, which can be used to assess the sensitivity of the Q-test to publication bias, and we apply it to two published meta-analysis. Meta-analytic methods should be enhanced in order to be able to deal with publication bias in their assessment and tests of heterogeneity.

2019 ◽  
Vol 227 (4) ◽  
pp. 261-279 ◽  
Author(s):  
Frank Renkewitz ◽  
Melanie Keiner

Abstract. Publication biases and questionable research practices are assumed to be two of the main causes of low replication rates. Both of these problems lead to severely inflated effect size estimates in meta-analyses. Methodologists have proposed a number of statistical tools to detect such bias in meta-analytic results. We present an evaluation of the performance of six of these tools. To assess the Type I error rate and the statistical power of these methods, we simulated a large variety of literatures that differed with regard to true effect size, heterogeneity, number of available primary studies, and sample sizes of these primary studies; furthermore, simulated studies were subjected to different degrees of publication bias. Our results show that across all simulated conditions, no method consistently outperformed the others. Additionally, all methods performed poorly when true effect sizes were heterogeneous or primary studies had a small chance of being published, irrespective of their results. This suggests that in many actual meta-analyses in psychology, bias will remain undiscovered no matter which detection method is used.


2021 ◽  
Author(s):  
Megha Joshi ◽  
James E Pustejovsky ◽  
S. Natasha Beretvas

The most common and well-known meta-regression models work under the assumption that there is only one effect size estimate per study and that the estimates are independent. However, meta-analytic reviews of social science research often include multiple effect size estimates per primary study, leading to dependence in the estimates. Some meta-analyses also include multiple studies conducted by the same lab or investigator, creating another potential source of dependence. An increasingly popular method to handle dependence is robust variance estimation (RVE), but this method can result in inflated Type I error rates when the number of studies is small. Small-sample correction methods for RVE have been shown to control Type I error rates adequately but may be overly conservative, especially for tests of multiple-contrast hypotheses. We evaluated an alternative method for handling dependence, cluster wild bootstrapping, which has been examined in the econometrics literature but not in the context of meta-analysis. Results from two simulation studies indicate that cluster wild bootstrapping maintains adequate Type I error rates and provides more power than extant small sample correction methods, particularly for multiple-contrast hypothesis tests. We recommend using cluster wild bootstrapping to conduct hypothesis tests for meta-analyses with a small number of studies. We have also created an R package that implements such tests.


2018 ◽  
Author(s):  
Frank Renkewitz ◽  
Melanie Keiner

Publication biases and questionable research practices are assumed to be two of the main causes of low replication rates observed in the social sciences. Both of these problems do not only increase the proportion of false positives in the literature but can also lead to severely inflated effect size estimates in meta-analyses. Methodologists have proposed a number of statistical tools to detect and correct such bias in meta-analytic results. We present an evaluation of the performance of six of these tools in detecting bias. To assess the Type I error rate and the statistical power of these tools we simulated a large variety of literatures that differed with regard to underlying true effect size, heterogeneity, number of available primary studies and variation of sample sizes in these primary studies. Furthermore, simulated primary studies were subjected to different degrees of publication bias. Our results show that the power of the detection methods follows a complex pattern. Across all simulated conditions, no method consistently outperformed all others. Hence, choosing an optimal method would require knowledge about parameters (e.g., true effect size, heterogeneity) that meta-analysts cannot have. Additionally, all methods performed badly when true effect sizes were heterogeneous or primary studies had a small chance of being published irrespective of their results. This suggests, that in many actual meta-analyses in psychology bias will remain undiscovered no matter which detection method is used.


2018 ◽  
Author(s):  
Robbie Cornelis Maria van Aert

More and more scientific research gets published nowadays, asking for statistical methods that enable researchers to get an overview of the literature in a particular research field. For that purpose, meta-analysis methods were developed that can be used for statistically combining the effect sizes from independent primary studies on the same topic. My dissertation focuses on two issues that are crucial when conducting a meta-analysis: publication bias and heterogeneity in primary studies’ true effect sizes. Accurate estimation of both the meta-analytic effect size as well as the between-study variance in true effect size is crucial since the results of meta-analyses are often used for policy making. Publication bias distorts the results of a meta-analysis since it refers to situations where publication of a primary study depends on its results. We developed new meta-analysis methods, p-uniform and p-uniform*, which estimate effect sizes corrected for publication bias and also test for publication bias. Although the methods perform well in many conditions, these and the other existing methods are shown not to perform well when researchers use questionable research practices. Additionally, when publication bias is absent or limited, traditional methods that do not correct for publication bias outperform p¬-uniform and p-uniform*. Surprisingly, we found no strong evidence for the presence of publication bias in our pre-registered study on the presence of publication bias in a large-scale data set consisting of 83 meta-analyses and 499 systematic reviews published in the fields of psychology and medicine. We also developed two methods for meta-analyzing a statistically significant published original study and a replication of that study, which reflects a situation often encountered by researchers. One method is a frequentist whereas the other method is a Bayesian statistical method. Both methods are shown to perform better than traditional meta-analytic methods that do not take the statistical significance of the original study into account. Analytical studies of both methods also show that sometimes the original study is better discarded for optimal estimation of the true effect size. Finally, we developed a program for determining the required sample size in a replication analogous to power analysis in null hypothesis testing. Computing the required sample size with the method revealed that large sample sizes (approximately 650 participants) are required to be able to distinguish a zero from a small true effect.Finally, in the last two chapters we derived a new multi-step estimator for the between-study variance in primary studies’ true effect sizes, and examined the statistical properties of two methods (Q-profile and generalized Q-statistic method) to compute the confidence interval of the between-study variance in true effect size. We proved that the multi-step estimator converges to the Paule-Mandel estimator which is nowadays one of the recommended methods to estimate the between-study variance in true effect sizes. Two Monte-Carlo simulation studies showed that the coverage probabilities of Q-profile and generalized Q-statistic method can be substantially below the nominal coverage rate if the assumptions underlying the random-effects meta-analysis model were violated.


2001 ◽  
Vol 26 (1) ◽  
pp. 105-132 ◽  
Author(s):  
Douglas A. Powell ◽  
William D. Schafer

The robustness literature for the structural equation model was synthesized following the method of Harwell which employs meta-analysis as developed by Hedges and Vevea. The study focused on the explanation of empirical Type I error rates for six principal classes of estimators: two that assume multivariate normality (maximum likelihood and generalized least squares), elliptical estimators, two distribution-free estimators (asymptotic and others), and latent projection. Generally, the chi-square tests for overall model fit were found to be sensitive to non-normality and the size of the model for all estimators (with the possible exception of the elliptical estimators with respect to model size and the latent projection techniques with respect to non-normality). The asymptotic distribution-free (ADF) and latent projection techniques were also found to be sensitive to sample sizes. Distribution-free methods other than ADF showed, in general, much less sensitivity to all factors considered.


2015 ◽  
Vol 46 (3) ◽  
pp. 586-603 ◽  
Author(s):  
Ma Dolores Hidalgo ◽  
Isabel Benítez ◽  
Jose-Luis Padilla ◽  
Juana Gómez-Benito

The growing use of scales in survey questionnaires warrants the need to address how does polytomous differential item functioning (DIF) affect observed scale score comparisons. The aim of this study is to investigate the impact of DIF on the type I error and effect size of the independent samples t-test on the observed total scale scores. A simulation study was conducted, focusing on potential variables related to DIF in polytomous items, such as DIF pattern, sample size, magnitude, and percentage of DIF items. The results showed that DIF patterns and the number of DIF items affected the type I error rates and effect size of t-test values. The results highlighted the need to analyze DIF before making comparative group interpretations.


2019 ◽  
Author(s):  
Melissa Angelina Rodgers ◽  
James E Pustejovsky

Selective reporting of results based on their statistical significance threatens the validity of meta-analytic findings. A variety of techniques for detecting selective reporting, publication bias, or small-study effects are available and are routinely used in research syntheses. Most such techniques are univariate, in that they assume that each study contributes a single, independent effect size estimate to the meta-analysis. In practice, however, studies often contribute multiple, statistically dependent effect size estimates, such as for multiple measures of a common outcome construct. Many methods are available for meta-analyzing dependent effect sizes, but methods for investigating selective reporting while also handling effect size dependencies require further investigation. Using Monte Carlo simulations, we evaluate three available univariate tests for small-study effects or selective reporting, including the Trim & Fill test, Egger's regression test, and a likelihood ratio test from a three-parameter selection model (3PSM), when dependence is ignored or handled using ad hoc techniques. We also examine two variants of Egger’s regression test that incorporate robust variance estimation (RVE) or multi-level meta-analysis (MLMA) to handle dependence. Simulation results demonstrate that ignoring dependence inflates Type I error rates for all univariate tests. Variants of Egger's regression maintain Type I error rates when dependent effect sizes are sampled or handled using RVE or MLMA. The 3PSM likelihood ratio test does not fully control Type I error rates. With the exception of the 3PSM, all methods have limited power to detect selection bias except under strong selection for statistically significant effects.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Lawrence M. Paul

Abstract Background The use of meta-analysis to aggregate the results of multiple studies has increased dramatically over the last 40 years. For homogeneous meta-analysis, the Mantel–Haenszel technique has typically been utilized. In such meta-analyses, the effect size across the contributing studies of the meta-analysis differs only by statistical error. If homogeneity cannot be assumed or established, the most popular technique developed to date is the inverse-variance DerSimonian and Laird (DL) technique (DerSimonian and Laird, in Control Clin Trials 7(3):177–88, 1986). However, both of these techniques are based on large sample, asymptotic assumptions. At best, they are approximations especially when the number of cases observed in any cell of the corresponding contingency tables is small. Results This research develops an exact, non-parametric test for evaluating statistical significance and a related method for estimating effect size in the meta-analysis of k 2 × 2 tables for any level of heterogeneity as an alternative to the asymptotic techniques. Monte Carlo simulations show that even for large values of heterogeneity, the Enhanced Bernoulli Technique (EBT) is far superior at maintaining the pre-specified level of Type I Error than the DL technique. A fully tested implementation in the R statistical language is freely available from the author. In addition, a second related exact test for estimating the Effect Size was developed and is also freely available. Conclusions This research has developed two exact tests for the meta-analysis of dichotomous, categorical data. The EBT technique was strongly superior to the DL technique in maintaining a pre-specified level of Type I Error even at extremely high levels of heterogeneity. As shown, the DL technique demonstrated many large violations of this level. Given the various biases towards finding statistical significance prevalent in epidemiology today, a strong focus on maintaining a pre-specified level of Type I Error would seem critical. In addition, a related exact method for estimating the Effect Size was developed.


2015 ◽  
Vol 26 (3) ◽  
pp. 1500-1518 ◽  
Author(s):  
Annamaria Guolo ◽  
Cristiano Varin

This paper investigates the impact of the number of studies on meta-analysis and meta-regression within the random-effects model framework. It is frequently neglected that inference in random-effects models requires a substantial number of studies included in meta-analysis to guarantee reliable conclusions. Several authors warn about the risk of inaccurate results of the traditional DerSimonian and Laird approach especially in the common case of meta-analysis involving a limited number of studies. This paper presents a selection of likelihood and non-likelihood methods for inference in meta-analysis proposed to overcome the limitations of the DerSimonian and Laird procedure, with a focus on the effect of the number of studies. The applicability and the performance of the methods are investigated in terms of Type I error rates and empirical power to detect effects, according to scenarios of practical interest. Simulation studies and applications to real meta-analyses highlight that it is not possible to identify an approach uniformly superior to alternatives. The overall recommendation is to avoid the DerSimonian and Laird method when the number of meta-analysis studies is modest and prefer a more comprehensive procedure that compares alternative inferential approaches. R code for meta-analysis according to all of the inferential methods examined in the paper is provided.


Sign in / Sign up

Export Citation Format

Share Document