scholarly journals HTAD: A Home-Tasks Activities Dataset with Wrist-accelerometer and Audio Features

2020 ◽  
Author(s):  
Enrique Garcia-Ceja ◽  
Vajira Thambawita ◽  
Steven Hicks ◽  
Debesh Jha ◽  
Petter Jakobsen ◽  
...  

In this paper, we present HTAD: A Home Tasks Activities Dataset. The dataset contains wrist-accelerometer and audio data from people performing at-home tasks such as sweeping, brushing teeth, washing hands, or watching TV. These activities represent a subset of activities that are needed to be able to live independently. Being able to detect activities with wearable devices in real-time has the potential for the realization of assistive technologies with applications in different domains such as elderly care and mental health monitoring. Preliminary results show that using machine learning with the dataset leads to promising results, but also that there is still improvement potential. By making this dataset public, researchers can test different machine learning algorithms for activity recognition, especially, sensor data fusion methods.

Author(s):  
G. S. Karthick ◽  
P. B. Pankajavalli

The rapid innovations in technologies endorsed the emergence of sensory equipment's connection to the Internet for acquiring data from the environment. The increased number of devices generates the enormous amount of sensor data from diversified applications of Internet of things (IoT). The generation of data may be a fast or real-time data stream which depends on the nature of applications. Applying analytics and intelligent processing over the data streams discovers the useful information and predicts the insights. Decision-making is a prominent process which makes the IoT paradigm qualified. This chapter provides an overview of architecting IoT-based healthcare systems with different machine learning algorithms. This chapter elaborates the smart data characteristics and design considerations for efficient adoption of machine learning algorithms into IoT applications. In addition, various existing and hybrid classification algorithms are applied to sensory data for identifying falls from other daily activities.


Author(s):  
Peyakunta Bhargavi ◽  
Singaraju Jyothi

The moment we live in today demands the convergence of the cloud computing, fog computing, machine learning, and IoT to explore new technological solutions. Fog computing is an emerging architecture intended for alleviating the network burdens at the cloud and the core network by moving resource-intensive functionalities such as computation, communication, storage, and analytics closer to the end users. Machine learning is a subfield of computer science and is a type of artificial intelligence (AI) that provides machines with the ability to learn without explicit programming. IoT has the ability to make decisions and take actions autonomously based on algorithmic sensing to acquire sensor data. These embedded capabilities will range across the entire spectrum of algorithmic approaches that is associated with machine learning. Here the authors explore how machine learning methods have been used to deploy the object detection, text detection in an image, and incorporated for better fulfillment of requirements in fog computing.


2008 ◽  
Vol 47 (01) ◽  
pp. 70-75 ◽  
Author(s):  
V. Jakkula ◽  
D. J. Cook

Summary Objectives: To many people, home is a sanctuary. With the maturing of smart home technologies, many people with cognitive and physical disabilities can lead independent lives in their own homes for extended periods of time. In this paper, we investigate the design of machine learning algorithms that support this goal. We hypothesize that machine learning algorithms can be designed to automatically learn models of resident behavior in a smart home, and that the results can be used to perform automated health monitoring and to detect anomalies. Methods: Specifically, our algorithms draw upon the temporal nature of sensor data collected in a smart home to build a model of expected activities and to detect unexpected, and possibly health-critical, events in the home. Results: We validate our algorithms using synthetic data and real activity data collected from volunteers in an automated smart environment. Conclusions: The results from our experiments support our hypothesis that a model can be learned from observed smart home data and used to report anomalies, as they occur, in a smart home.


2018 ◽  
Vol 8 (8) ◽  
pp. 1280 ◽  
Author(s):  
Yong Kim ◽  
Youngdoo Son ◽  
Wonjoon Kim ◽  
Byungki Jin ◽  
Myung Yun

Sitting on a chair in an awkward posture or sitting for a long period of time is a risk factor for musculoskeletal disorders. A postural habit that has been formed cannot be changed easily. It is important to form a proper postural habit from childhood as the lumbar disease during childhood caused by their improper posture is most likely to recur. Thus, there is a need for a monitoring system that classifies children’s sitting postures. The purpose of this paper is to develop a system for classifying sitting postures for children using machine learning algorithms. The convolutional neural network (CNN) algorithm was used in addition to the conventional algorithms: Naïve Bayes classifier (NB), decision tree (DT), neural network (NN), multinomial logistic regression (MLR), and support vector machine (SVM). To collect data for classifying sitting postures, a sensing cushion was developed by mounting a pressure sensor mat (8 × 8) inside children’s chair seat cushion. Ten children participated, and sensor data was collected by taking a static posture for the five prescribed postures. The accuracy of CNN was found to be the highest as compared with those of the other algorithms. It is expected that the comprehensive posture monitoring system would be established through future research on enhancing the classification algorithm and providing an effective feedback system.


2020 ◽  
pp. 1420326X2093157
Author(s):  
Yu Huang ◽  
Zhi Gao ◽  
Hongguang Zhang

The accurate identification of the characteristics of pollutant sources can effectively prevent the loss of human life and property damage caused by the sudden release of harmful chemicals in emergency situations. Machine learning algorithms, artificial neural network (ANN), support vector machine (SVM), k-nearest neighbour (KNN) and naive Bayesian (NB) classification can be used to identify the location of pollutant sources with limited sensor data inputs. In this study, the identification accuracy of the four above-mentioned machine learning algorithms was investigated and compared, considering the different sensor layouts, eigenvector inputs, meteorological parameters and number of samples. The results show that the collection of pollutant concentrations over an extended period of time could improve identification accuracy. Additional sensors were required to reach the same identification accuracy after the introduction of distributed meteorological parameters. Increasing the number of trained samples by a factor of five improved the identification accuracy of KNN by 22% and that of SVM by 1.7%; however, ANN and NB classification remained basically unchanged. When identifying the release mass of the pollutant source, multiple linear, ANN and SVM regression models were adopted. Results show that ANN performs best, whereas SVM provides the least optimal performance.


Author(s):  
Sofie Reumers ◽  
Feng Liu ◽  
Davy Janssens ◽  
Geert Wets

The aim of this chapter is to evaluate whether GPS data can be annotated or semantically enriched with different activity categories, allowing GPS data to be used in the future in simulation systems. The data in the study stems from a paper-and-pencil activity-travel diary survey and a corresponding survey in which GPS-enabled Personal Digital Assistants (PDAs) were used. A set of new approaches, which are all independent of additional sensor data and map information, thus significantly reducing additional costs and making the set of techniques relatively easily transferable to other regions, are proposed. Furthermore, this chapter makes a detailed comparison of different machine learning algorithms to semantically enrich GPS data with activity type information.


Sign in / Sign up

Export Citation Format

Share Document