Hydrogels are promising considering their incredible capacity to modify, encapsulate and co-deliver medicinal compounds, cells, biomolecules, and nanomaterials

2021 ◽  
Author(s):  
Moataz Dowaidar

As many medications are administered jointly, they often give larger benefits, counteract disadvantages, and enhance treatment results compared to monotherapy. Whether natural or synthetic, injectable biomaterials can form degradable networks in situ, decreasing patient pain and cost while presenting new and promising possibilities for minimally invasive surgery. Biomaterials' ability to create and manufacture injectable systems is strongly impacted by their physicochemical and mechanical properties. The design and manufacture of injectable systems containing cells, therapeutic molecules, particles, and biomolecules that can be injected into geometrically complex body tissue regions poses a significant challenge as they must ensure drug/biomolecule/material bioactivity, cell survival and retention. Hydrogels are a promising choice in this case given their amazing ability to manipulate, encapsulate and co-deliver pharmaceutical chemicals, cells, biomolecules, and nanomaterials. Hydrogels can alter their mechanical and deteriorating qualities by adjusting the cross-linking technique and chemical composition. The ability to modify IH's mechanical strength permits co-encapsulation of medicinal compounds, cells, nanomaterials, and growth factors in the matrix in situ, allowing for multimodal synergistic therapies.To boost the prospects of translating IHs into normal clinics, various barriers and outstanding scientific issues must be tackled in the future. Future investigations, including the application of IHs in multimodal synergistic treatment, should start with large animal models such as monkeys and dogs or even ex vivo human tissue models. In addition, the period of in vivo evaluations should be prolonged from weeks to months for trustworthy and accurate data to be translated to clinical trials. On the one hand, the toxicity of certain crosslinking agents used in IH synthesis must be considered, as the residues will cause unwanted in vivo reactions.Toxic crosslinkers, on the other hand, may interact with therapeutic molecules/biomolecules or nanomaterials trapped in the hydrogel matrix, causing loss of bioactivity. Similarly, IHs' sol–gel transition is a vital issue requiring much investigation. A quick sol–gel transition of precursor solutions might cause the fluid to be caught in the needle, whereas high-viscosity precursor solutions need high injection force, resulting in physician hand fatigue and patient annoyance. Other concerns for clinical IH translation include fast release and rate of degradation. Degradation rate is critical in controlling therapeutic drug release and tissue regeneration. Fast hydrogel breakdown may trigger early inflammatory reaction due to breakdown products, whereas delayed degradation may result in insufficient release of therapeutic drugs. Changing the composition, structure, and crystallinity of polymers must be employed to customize the breakdown rate. Expert researchers will be better equipped to tackle these challenges if they have a deeper knowledge of polymers' physiochemical features. Overall, future IH design should focus on building simple, well-defined 3D networks with low toxicity, high biodegradation rate, and acceptable functionality.

Gels ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. 78
Author(s):  
Malik Salman Haider ◽  
Taufiq Ahmad ◽  
Mengshi Yang ◽  
Chen Hu ◽  
Lukas Hahn ◽  
...  

As one kind of “smart” material, thermogelling polymers find applications in biofabrication, drug delivery and regenerative medicine. In this work, we report a thermosensitive poly(2-oxazoline)/poly(2-oxazine) based diblock copolymer comprising thermosensitive/moderately hydrophobic poly(2-N-propyl-2-oxazine) (pPrOzi) and thermosensitive/moderately hydrophilic poly(2-ethyl-2-oxazoline) (pEtOx). Hydrogels were only formed when block length exceeded certain length (≈100 repeat units). The tube inversion and rheological tests showed that the material has then a reversible sol-gel transition above 25 wt.% concentration. Rheological tests further revealed a gel strength around 3 kPa, high shear thinning property and rapid shear recovery after stress, which are highly desirable properties for extrusion based three-dimensional (3D) (bio) printing. Attributed to the rheology profile, well resolved printability and high stackability (with added laponite) was also possible. (Cryo) scanning electron microscopy exhibited a highly porous, interconnected, 3D network. The sol-state at lower temperatures (in ice bath) facilitated the homogeneous distribution of (fluorescently labelled) human adipose derived stem cells (hADSCs) in the hydrogel matrix. Post-printing live/dead assays revealed that the hADSCs encapsulated within the hydrogel remained viable (≈97%). This thermoreversible and (bio) printable hydrogel demonstrated promising properties for use in tissue engineering applications.


Author(s):  
F C M Driessens ◽  
J A Planell ◽  
M G Boltong ◽  
I Khairoun ◽  
M P Ginebra

Calcium phosphate bone cements (CPBCs) are osteotransductive, i.e. after implantation in bone they are transformed into new bone tissue. Furthermore, due to the fact that they are mouldable, their osteointegration is immediate. Their chemistry has been established previously. Some CPBCs contain amorphous calcium phosphate (ACP) and set by a sol-gel transition. The others are crystalline and can give as the reaction product dicalcium phosphate dihydrate (DCPD), calcium-deficient hydroxyapatite (CDHA), carbonated apatite (CA) or hydroxyapatite (HA). Mixed-type gypsum-DCPD cements are also described. In vivo rates of osteotransduction vary as follows: gypsum-DCPD > DCPD > CDHA ≍ CA > HA. The osteotransduction of CDHA-type cements may be increased by adding dicalcium phosphate anhydrous (DCP) and/or CaCO3 to the cement powder. CPBCs can be used for healing of bone defects, bone augmentation and bone reconstruction. Incorporation of drugs like antibiotics and bone morphogenetic protein is envisaged. Load-bearing applications are allowed for CDHA-type, CA-type and HA-type CPBCs as they have a higher compressive strength than human trabecular bone (10 MPa).


2021 ◽  
Author(s):  
Xiaoxiao Li ◽  
Di Zhao ◽  
Kenneth J. Shea ◽  
Xueting Li ◽  
Xihua Lu

In this paper, soft thermosensitive photonic crystals are immobilized via a reversible temperature-triggered in situ sol–gel transition above their phase transition temperature (Tp), which may be a significant advance in the field.


2006 ◽  
Vol 46 (5) ◽  
pp. 595-600 ◽  
Author(s):  
Loredana Elena Niţă ◽  
Aurica P. Chiriac ◽  
Maria Bercea ◽  
Iordana Neamţu

Pharmaceutics ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 511 ◽  
Author(s):  
Vigani ◽  
Faccendini ◽  
Rossi ◽  
Sandri ◽  
Bonferoni ◽  
...  

Local administration of vaginal probiotics, especially lactobacilli, has been recently proposed as an effective prevention strategy against candidosis recurrences, which affect 40–50% of women. In this context, the aim of the present work was the development of a mucoadhesive in situ gelling formulation for the vaginal administration of Lactobacillus gasseri. Mixtures of poloxamer 407 (P407) and methylcellulose (MC), two thermosensitive polymers, were prepared and subjected to rheological analyses for the assessment of their sol/gel transition temperature. The association of P407 (15% w/w) with MC (1.5% w/w) produced an increase in gelation extent at 37 °C even after dilution in simulated vaginal fluid (SVF). The presence of 0.5% w/w pectin (PEC) produced a reduction of vehicle pH and viscosity at 25 °C that is the vehicle resistance to flow during administration. The presence of a low concentration of xyloglucan (XYL) (0.25% w/w) increases the mucoadhesive properties and the capability to gelify at 37 °C of the formulation after dilution with SVF. A three-component (P407/MC/PEC; 3cM) and a four-component (P407/MC/PEC/XYL; 4cM) mixture were selected as promising candidates for the delivery of L. gasseri to the vaginal cavity. They were able to preserve L. gasseri viability and were cytocompatible towards the HeLa cell line.


Sign in / Sign up

Export Citation Format

Share Document