scholarly journals Annual Normalized Difference Vegetation Index time-series data for Australian statistical areas

2021 ◽  
Author(s):  
Simon Ramsey ◽  
Suzanne Mavoa

Google Earth Engine provides researchers with a platform for conducting planetary scale analysis of environmental processes and landcover change, both by providing the necessary tools and by handling the large quantities of data these analyses require. The most widely used moderate-resolution sensors, onboard the Landsat satellite platforms, often require pre-processing to prepare the data for analysis. This data set consists of Australia-wide Landsat derived Normalised Difference Vegetation Index (NDVI) values for the years 2001-2019. The median annual NDVI value for each Statistical Area 1 (SA1) and Statistical Area 2 (SA2) were calculated, and statistics for this imagery is provided in a tabular format. The accompanying Google Earth Engine script applies the pre-processing steps required to account for sensor, solar and atmospheric effects, improving continuity between imagery across space and time and therefore, will enable researchers beyond the remote sensing community to access analysis-ready imagery for the moderate resolution Landsat and Sentinel-2 satellite platforms.

2019 ◽  
Vol 11 (24) ◽  
pp. 3023 ◽  
Author(s):  
Shuai Xie ◽  
Liangyun Liu ◽  
Xiao Zhang ◽  
Jiangning Yang ◽  
Xidong Chen ◽  
...  

The Google Earth Engine (GEE) has emerged as an essential cloud-based platform for land-cover classification as it provides massive amounts of multi-source satellite data and high-performance computation service. This paper proposed an automatic land-cover classification method using time-series Landsat data on the GEE cloud-based platform. The Moderate Resolution Imaging Spectroradiometer (MODIS) land-cover products (MCD12Q1.006) with the International Geosphere–Biosphere Program (IGBP) classification scheme were used to provide accurate training samples using the rules of pixel filtering and spectral filtering, which resulted in an overall accuracy (OA) of 99.2%. Two types of spectral–temporal features (percentile composited features and median composited monthly features) generated from all available Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+) data from the year 2010 ± 1 were used as input features to a Random Forest (RF) classifier for land-cover classification. The results showed that the monthly features outperformed the percentile features, giving an average OA of 80% against 77%. In addition, the monthly features composited using the median outperformed those composited using the maximum Normalized Difference Vegetation Index (NDVI) with an average OA of 80% against 78%. Therefore, the proposed method is able to generate accurate land-cover mapping automatically based on the GEE cloud-based platform, which is promising for regional and global land-cover mapping.


Climate ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 109
Author(s):  
Nikul Kumari ◽  
Ankur Srivastava ◽  
Umesh Chandra Dumka

The Himalayas constitute one of the richest and most diverse ecosystems in the Indian sub-continent. Vegetation greenness driven by climate in the Himalayan region is often overlooked as field-based studies are challenging due to high altitude and complex topography. Although the basic information about vegetation cover and its interactions with different hydroclimatic factors is vital, limited attention has been given to understanding the response of vegetation to different climatic factors. The main aim of the present study is to analyse the relationship between the spatiotemporal variability of vegetation greenness and associated climatic and hydrological drivers within the Upper Khoh River (UKR) Basin of the Himalayas at annual and seasonal scales. We analysed two vegetation indices, namely, normalised difference vegetation index (NDVI) and enhanced vegetation index (EVI) time-series data, for the last 20 years (2001–2020) using Google Earth Engine. We found that both the NDVI and EVI showed increasing trends in the vegetation greening during the period under consideration, with the NDVI being consistently higher than the EVI. The mean NDVI and EVI increased from 0.54 and 0.31 (2001), respectively, to 0.65 and 0.36 (2020). Further, the EVI tends to correlate better with the different hydroclimatic factors in comparison to the NDVI. The EVI is strongly correlated with ET with r2 = 0.73 whereas the NDVI showed satisfactory performance with r2 = 0.45. On the other hand, the relationship between the EVI and precipitation yielded r2 = 0.34, whereas there was no relationship was observed between the NDVI and precipitation. These findings show that there exists a strong correlation between the EVI and hydroclimatic factors, which shows that changes in vegetation phenology can be better captured using the EVI than the NDVI.


2020 ◽  
Vol 12 (19) ◽  
pp. 3120
Author(s):  
Luojia Hu ◽  
Nan Xu ◽  
Jian Liang ◽  
Zhichao Li ◽  
Luzhen Chen ◽  
...  

A high resolution mangrove map (e.g., 10-m), including mangrove patches with small size, is urgently needed for mangrove protection and ecosystem function estimation, because more small mangrove patches have disappeared with influence of human disturbance and sea-level rise. However, recent national-scale mangrove forest maps are mainly derived from 30-m Landsat imagery, and their spatial resolution is relatively coarse to accurately characterize the extent of mangroves, especially those with small size. Now, Sentinel imagery with 10-m resolution provides an opportunity for generating high-resolution mangrove maps containing these small mangrove patches. Here, we used spectral/backscatter-temporal variability metrics (quantiles) derived from Sentinel-1 SAR (Synthetic Aperture Radar) and/or Sentinel-2 MSI (Multispectral Instrument) time-series imagery as input features of random forest to classify mangroves in China. We found that Sentinel-2 (F1-Score of 0.895) is more effective than Sentinel-1 (F1-score of 0.88) in mangrove extraction, and a combination of SAR and MSI imagery can get the best accuracy (F1-score of 0.94). The 10-m mangrove map was derived by combining SAR and MSI data, which identified 20003 ha mangroves in China, and the area of small mangrove patches (<1 ha) is 1741 ha, occupying 8.7% of the whole mangrove area. At the province level, Guangdong has the largest area (819 ha) of small mangrove patches, and in Fujian, the percentage of small mangrove patches is the highest (11.4%). A comparison with existing 30-m mangrove products showed noticeable disagreement, indicating the necessity for generating mangrove extent product with 10-m resolution. This study demonstrates the significant potential of using Sentinel-1 and Sentinel-2 images to produce an accurate and high-resolution mangrove forest map with Google Earth Engine (GEE). The mangrove forest map is expected to provide critical information to conservation managers, scientists, and other stakeholders in monitoring the dynamics of the mangrove forest.


Author(s):  
Michael Marszalek ◽  
Maximilian Lösch ◽  
Marco Körner ◽  
Urs Schmidhalter

Crop type and field boundary mapping enable cost-efficient crop management on the field scale and serve as the basis for yield forecasts. Our study uses a data set with crop types and corresponding field borders from the federal state of Bavaria, Germany, as documented by farmers from 2016 to 2018. The study classified corn, winter wheat, barley, sugar beet, potato, and rapeseed as the main crops grown in Upper Bavaria. Corresponding Sentinel-2 data sets include the normalised difference vegetation index (NDVI) and raw band data from 2016 to 2018 for each selected field. The influences of clouds, raw bands, and NDVI on crop type classification are analysed, and the classification algorithms, i.e., support vector machine (SVM) and random forest (RF), are compared. Field boundary detection and extraction are based on non-iterative clustering and a newly developed procedure based on Canny edge detection. The results emphasise the application of Sentinel&rsquo;s raw bands (B1&ndash;B12) and RF, which outperforms SVM with an accuracy of up to 94%. Furthermore, we forecast data for an unknown year, which slightly reduces the classification accuracy. The results demonstrate the usefulness of the proof-of-concept and its readiness for use in real applications.


2021 ◽  
Author(s):  
Xiaofang Ling ◽  
Ruyin Cao

&lt;p&gt;The Normalized Difference Vegetation Index (NDVI) data provided by the satellite Landsat have rich historical archive data with a spatial resolution of 30 m. However, the Landsat NDVI time-series data are quite discontinuous due to its 16-day revisit cycle, cloud contamination and some other factors. The spatiotemporal data fusion technology has been proposed to reconstruct continuous Landsat NDVI time-series data by blending the MODIS data with the Landsat data. Although a number of spatiotemporal fusion algorithms have been developed during the past decade, most of the existing algorithms usually ignore the effective use of partially cloud-contaminated images. In this study, we presented a new spatiotemporal fusion method, which employed the cloud-free pixels in the partially cloud-contaminated images to improve the performance of MODIS-Landsat data fusion by &lt;strong&gt;C&lt;/strong&gt;orrecting the inconsistency between MODIS and Landsat data in &lt;strong&gt;S&lt;/strong&gt;patiotemporal &lt;strong&gt;DA&lt;/strong&gt;ta &lt;strong&gt;F&lt;/strong&gt;usion (called CSDAF). We tested the new method at three sites covered by different vegetation types, including deciduous forests in the Shennongjia Forestry District of China (SNJ), evergreen forests in Southeast Asia (SEA), and the irrigated farmland in the Coleambally irrigated area of Australia (CIA). Two experiments were designed. In experiment I, we first simulated different cloud coverages in cloud-free Landsat images and then used both CSDAF and the recently developed IFSDAF method to restore these &amp;#8220;missing&amp;#8221; pixels for quantitative assessments. Results showed that CSDAF performed better than IFSDAF by achieving the smaller average Root Mean Square Error (RMSE) values (0.0767 vs. 0.1116) and the larger average Structural SIMilarity index (SSIM) values (0.8169 vs. 0.7180). In experiment II, we simulated the scenario of &amp;#8220;inconsistence&amp;#8221; between MODIS and Landsat by simulating different levels of noise on MODIS and Landsat data. Results showed that CSDAF was able to reduce the influence of the inconsistence between MODIS and Landsat data on MODIS-Landsat data fusion to some extent. Moreover, CSDAF is simple and can be implemented on the Google Earth Engine. We expect that CSDAF is potentially to be used to reconstruct Landsat NDVI time-series data at the regional and continental scales.&lt;/p&gt;


2020 ◽  
Author(s):  
Dibyendu Dutta ◽  
Akanksha Balha ◽  
Prabir Kumar Das ◽  
Pragyan Jain ◽  
Libeesh Lukose ◽  
...  

The forest area of Assam State is known for its rich biodiversity. In the present study, the disturbance regime within the Assam forest area caused by periodic flood and forest fire, was assessed using the Moderate Resolution Imaging Spectroradiometer (MODIS) time-series (2001–2011) data. The MODIS Global Disturbance Index (MGDI) images were generated using MODIS derived Enhanced Vegetation Index (EVI) and Land Surface Temperature (LST) images. The temporal intensity of flood and forest fire in sixteen representative forests was analyzed to develop the MGDI based thresholds for detecting the disturbed area. The threshold for the non-instantaneous disturbance, i.e. flood, was found to be 107% whereas it was 111% for instantaneous disturbance, i.e. forest fire. The thresholds were applied on the MGDI images to delineate disturbed caused by flood and fire, separately for each year. The time-series disturbance areas were integrated over the years (2001–2011) to generate the classified disturbance prone maps.


Sign in / Sign up

Export Citation Format

Share Document