scholarly journals Introducing Mammalian Cell Colony Formation in the Undergraduate Biology Laboratory

2020 ◽  
Author(s):  
Ashley Robinson ◽  
Mackenzie Crow ◽  
Austin Kratz ◽  
Taylor Ritts ◽  
Yewseok K. Suh ◽  
...  

Clonogenic assays are a simple and robust method that allow researchers to characterize mammalian cell line features, including the ability of a single cell to grow into a colony. We have used this assay as a tool in the undergraduate biology laboratory, exposing students to a more specialized form of mammalian cell culture and helping them refine scientific research skills and knowledge. In this article, we share an easy and undergraduate-friendly method of using HeLa cells to carry out clonogenic assays. The methods described include the introduction of different treatments to assess their effect in HeLa cell colony formation. In this laboratory exercise, undergraduate students utilize different cell culture techniques such as growing, harvesting, counting, diluting, staining, and imaging cells. Clonogenic assay, Cytotoxic agents, HeLa cells, Mammalian cell colony formation, undergraduate laboratory, Open Inquiry-Based Curriculum

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Ashley M. Robinson ◽  
Mackenzie M. Crow ◽  
Austin Kratz ◽  
Taylor Ritts ◽  
Yewseok K. Suh ◽  
...  

Author(s):  
Kristen Bowey-Dellinger ◽  
Luke Dixon ◽  
Kristin Ackerman ◽  
Cynthia Vigueira ◽  
Yewseok K. Suh ◽  
...  

2019 ◽  
Vol 16 (6) ◽  
pp. 478-484
Author(s):  
Kenia Barrantes ◽  
Mary Fuentes ◽  
Luz Chacón ◽  
Rosario Achí ◽  
Jorge Granados-Zuñiga ◽  
...  

Two ether and one ester derivatives of the 4-nitro-3-hydroxybenzoic acid were synthesized and characterized. The in vitro antimicrobial and cytotoxic activities of the three novel compounds were also evaluated. The aromatic derivatives showed antibacterial activity against one of the four microorganisms tested and two compounds (C8 and NOBA) had a lower IC50 in HeLa cells.


2020 ◽  
Vol 20 (17) ◽  
pp. 2125-2135
Author(s):  
Ci Ren ◽  
Chun Gao ◽  
Xiaomin Li ◽  
Jinfeng Xiong ◽  
Hui Shen ◽  
...  

Background: Persistent infection with the high-risk of human papillomavirus (HR-HPVs) is the primary etiological factor of cervical cancer; HR-HPVs express oncoproteins E6 and E7, both of which play key roles in the progression of cervical carcinogenesis. Zinc Finger Nucleases (ZFNs) targeting HPV E7 induce specific shear of the E7 gene, weakening the malignant biological effects, hence showing great potential for clinical transformation. Objective: Our aim was to develop a new comprehensive therapy for better clinical application of ZFNs. We here explored the anti-cancer efficiency of HPV targeted ZFNs combined with a platinum-based antineoplastic drug Cisplatin (DDP) and an HDAC inhibitor Trichostatin A (TSA). Methods: SiHa and HeLa cells were exposed to different concentrations of DDP and TSA; the appropriate concentrations for the following experiments were screened according to cell apoptosis. Then cells were grouped for combined or separate treatments; apoptosis, cell viability and proliferation ability were measured by flow cytometry detection, CCK-8 assays and colony formation assays. The xenograft experiments were also performed to determine the anti-cancer effects of the combined therapy. In addition, the HPV E7 and RB1 expressions were measured by western blot analysis. Results: Results showed that the combined therapy induced about two times more apoptosis than that of ZFNs alone in SiHa and HeLa cells, and much more inhibition of cell viability than either of the separate treatment. The colony formation ability was inhibited more than 80% by the co-treatment, the protein expression of HPV16/18E7 was down regulated and that of RB1 was elevated. In addition, the xenografts experiment showed a synergistic effect between DDP and TSA together with ZFNs. Conclusion: Our results demonstrated that ZFNs combined with DDP or TSA functioned effectively in cervical cancer cells, and it provided novel ideas for the prevention and treatment of HPV-related cervical malignancies.


2012 ◽  
Vol 59 (1) ◽  
Author(s):  
Mohd Helmi Sani ◽  
Frank Baganz

At present, there are a number of commercial small scale shaken systems available on the market with instrumented controllable microbioreactors such as Micro–24 Microreactor System (Pall Corporation, Port Washington, NY) and M2P Biolector, (M2P Labs GmbH, Aachen, Germany). The Micro–24 system is basically an orbital shaken 24–well plate that operates at working volume 3 – 7 mL with 24 independent reactors (deep wells, shaken and sparged) running simultaneously. Each reactor is designed as single use reactor that has the ability to continuously monitor and control the pH, DO and temperature. The reactor aeration is supplied by sparging air from gas feeds that can be controlled individually. Furthermore, pH can be controlled by gas sparging using either dilute ammonia or carbon dioxide directly into the culture medium through a membrane at the bottom of each reactor. Chen et al., (2009) evaluated the Micro–24 system for the mammalian cell culture process development and found the Micro–24 system is suitable as scaledown tool for cell culture application. The result showed that intra-well reproducibility, cell growth, metabolites profiles and protein titres were scalable with 2 L bioreactors.


In Vitro ◽  
1973 ◽  
Vol 8 (5) ◽  
pp. 375-378 ◽  
Author(s):  
Arthur H. Intosh ◽  
K. Maramorosch ◽  
C. Rechtoris

1999 ◽  
Vol 34 (2) ◽  
pp. 159-165 ◽  
Author(s):  
J. Feuser ◽  
M. Halfar ◽  
D. Lütkemeyer ◽  
N. Ameskamp ◽  
M.-R. Kula ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document