scholarly journals New version of Eugene Shoemaker formula more suitable for calculating the impact energy of meteorites and methods for calculating the mass and volume of meteorites

2020 ◽  
Author(s):  
Huadong Dian Zhao ◽  
Weigao Li ◽  
Haishan Dang ◽  
Jundong Tian

For an impact crater on land, scientists often need to estimate the impact energyaccording to the diameter of the impact crater. Since there is no unified formula to describe thecomplex physical process of impact, the results estimated by different scholars are quitedifferent, which makes it difficult to judge which one is more consistent with the facts. Forimpact craters in the history of the earth, which have been unable to know the impact angle, thereis an urgent need for a unified formula to obtain a more pertinent calculation result.Aftercomparing and analyzing several formulas put forward by previous scientists, we think thatEugene Shoemaker's formula in 1990 is better. We simplify and improve it in order to make itadapt to the calculation of very large impact energy, so as to avoid fallacies. At the end of thepaper, we also give a general method to estimate the mass and volume of meteorites afterobtaining the impact energy. The improved formula and method proposed in this paper can beused for reference by scholars and science lovers, and may need further research to improve it inthe future.

Author(s):  
Bradley L. Jolliff

Earth’s moon, hereafter referred to as “the Moon,” has been an object of intense study since before the time of the Apollo and Luna missions to the lunar surface and associated sample returns. As a differentiated rocky body and as Earth’s companion in the solar system, much study has been given to aspects such as the Moon’s surface characteristics, composition, interior, geologic history, origin, and what it records about the early history of the Earth-Moon system and the evolution of differentiated rocky bodies in the solar system. Much of the Apollo and post-Apollo knowledge came from surface geologic exploration, remote sensing, and extensive studies of the lunar samples. After a hiatus of nearly two decades following the end of Apollo and Luna missions, a new era of lunar exploration began with a series of orbital missions, including missions designed to prepare the way for longer duration human use and further exploration of the Moon. Participation in these missions has become international. The more recent missions have provided global context and have investigated composition, mineralogy, topography, gravity, tectonics, thermal evolution of the interior, thermal and radiation environments at the surface, exosphere composition and phenomena, and characteristics of the poles with their permanently shaded cold-trap environments. New samples were recognized as a class of achondrite meteorites, shown through geochemical and mineralogical similarities to have originated on the Moon. New sample-based studies with ever-improving analytical techniques and approaches have also led to significant discoveries such as the determination of volatile contents, including intrinsic H contents of lunar minerals and glasses. The Moon preserves a record of the impact history of the solar system, and new developments in timing of events, sample based and model based, are leading to a new reckoning of planetary chronology and the events that occurred in the early solar system. The new data provide the grist to test models of formation of the Moon and its early differentiation, and its thermal and volcanic evolution. Thought to have been born of a giant impact into early Earth, new data are providing key constraints on timing and process. The new data are also being used to test hypotheses and work out details such as for the magma ocean concept, the possible existence of an early magnetic field generated by a core dynamo, the effects of intense asteroidal and cometary bombardment during the first 500 million–600 million years, sequestration of volatile compounds at the poles, volcanism through time, including new information about the youngest volcanism on the Moon, and the formation and degradation processes of impact craters, so well preserved on the Moon. The Moon is a natural laboratory and cornerstone for understanding many processes operating in the space environment of the Earth and Moon, now and in the past, and of the geologic processes that have affected the planets through time. The Moon is a destination for further human exploration and activity, including use of valuable resources in space. It behooves humanity to learn as much about Earth’s nearest neighbor in space as possible.


2018 ◽  
Vol 13 (S349) ◽  
pp. 71-74
Author(s):  
Hans Rickman

AbstractA brief history of research concerning the risk of impacts by asteroids or comets onto the Earth is presented with attention to the role played by the IAU. Special focus is placed on the events that occurred about 20 years ago, which caused the IAU to become seriously involved in dealing with the impact hazard and to take a leading role in international coordination of these activities.


2018 ◽  
Vol 22 (1) ◽  
pp. 7-12
Author(s):  
Orlando Hernandez Pardo

This study estimates the regional environmental consequences of the impactor extraterrestrial body that could produce the probable Vichada impact crater structure on the Vichada Plain, in Colombia, South America. This paper details the parameter assumptions upon which the estimation is made. It describes an approach to quantifying the principal impact processes that could have affected the landscape in the vicinity of the probable Vichada impact event in the past. The key parameters are impactor diameter, impactor density, impact velocity before atmospheric entry, impact angle, and the distance from the impact at which the environmental effects are to be calculated, and the target type of sedimentary rock or crystalline rock. These parameters were chosen with support from The Vichada Structure dimensions obtained from remote sensing data interpretation, regional geologic mapping and interpreted satellite data and ground-based gravity and magnetic anomalies. The calculations are based on compiled novel algorithms for estimating the thermal radiation emitted by the impact-generated vapor plume or fireball, and the intensity of seismic shaking. Model validation is performed by obtaining the approximates various dimensions of the Vichada impact crater and ejecta deposit, as well as estimating the severity of the air blasting both crater-forming and air burst impacts. We illustrate the utility of the calculations by examining the predicted environmental consequences in seven localities of the Colombian territory, through hypothetical impact scenarios occurring in Cumaribo and Puerto Carreño (Vichada), Puerto Inirida (Guainía), Puerto Gaitán and Villavicencio (Meta), Mitú (Vaupes) and Bogotá, D.C. It is concluded that the most wide-reaching environmental consequence is seismic shaking. Both ejecta deposit thickness and air-blast pressure decay much more rapidly with distance than with seismic ground motion. Close to the impact site, the most devastating effect is from thermal radiation; however, the curvature of the Earth implies that distant localities are shielded from direct thermal radiation because the fireball is below the horizon. These results would guide further detailed fieldwork hunting for direct impact crater evidence and interpret high-resolution geophysical studies and borehole that could be carried out in the probable Vichada impact crater area shortly. 


2020 ◽  
Author(s):  
Stephen J. Mojzsis ◽  
Oleg Abramov

<p>Late accretionary bombardments in the first billion years of solar system history strongly affected the initial physical and chemical states of the Earth. Evidence of ancient impacts can be preserved in the oldest known terrestrial zircons with ages up to ca. 4.4 Ga. Here, we use the Hadean zircon record to directly assess the thermal effects of impact bombardment on the early Earth’s crust, couple the results to models of closure temperature-dependent diffusive loss and U-Pb age-resetting in zircon, derive zircon ages, and compare them to published ages.</p><p>The impact bombardment model consists of (i) a stochastic cratering model which populates the surface with craters within constraints derived from the lunar cratering record, the size/frequency distribution of the asteroid belt, and dynamical models; (ii) analytical expressions that calculate a temperature field for each crater; and (iii) a three-dimensional thermal model of the terrestrial lithosphere, where craters are allowed to cool by conduction and radiation. Equations for diffusion in zircon are coupled to these thermal models to estimate the amount of age-resetting.</p><p>We present modeling results for the Earth between 4.5 Ga and 3.5 Ga based new mass-production functions. Mean surface temperatures and geothermal gradients were assumed as 20 °C and 70 °C/km. Total delivered mass was estimated at 0.0013(M<sub>planet</sub>), or 7.8 × 10<sup>21</sup> kg. The size-frequency distributions of the impacts were derived from dynamical modeling. We begin model runs with a global magma ocean, which would have been formed by the Moon-forming impact. Mean impactor density of 3000 kg/m<sup>3</sup> and impactor velocity distribution from [1,2] was used, and impact angle of each impactor was stochastically generated from a gaussian centered at 45 degrees. The typical impact velocity of the Earth is ~21 km s<sup>-1</sup>.</p><p>It is important to note that the model age outputs we report omit normal processes of generation of zircon-saturated magmas that were operative in the Hadean. We find that as the impact flux decreases with time and becomes negligible for the purposes of thermal modeling by ca. 3.5 Ga. We find that the probability of randomly selecting a zircon of a given age increases with increasing age, predicting a large number of very old zircons. This contrasts with the actual age distribution of Hadean zircons, which, for >4 Ga, indicates the opposite case: the probability of selecting a zircon of a given age decreases with increasing age. We interpret this discrepancy to mean that impacts were not the dominant process in determining the ages of Hadean zircons. This is consistent with observations that the majority of Hadean zircons had formation temperature significantly lower than those expected for melt sheets and thermobarometry measurements suggesting formation of some Hadean zircons in a plate boundary environment.</p><p>[1] Mojzsis, S.J. et al. (2019). Astrophys. J., 881, 44. [2] Brasser, R. et al. (2020) Icarus 338, 113514. </p>


2009 ◽  
Vol 5 (S264) ◽  
pp. 475-477 ◽  
Author(s):  
David S. McKay ◽  
Louise Riofrio ◽  
Bonnie L. Cooper

AbstractThe lunar regolith (soil) has recorded a history of the early Moon, the Earth, and the entire solar system. A major goal of the developing lunar exploration program should be to find and play back existing fragments of that tape. By playing back the lunar tape, we can uncover a record of planetary bombardment, as well as solar and stellar variability. The Moon can tell us much about our place in the solar system and in the Universe. The lunar regolith has likely recorded the original meteoritic bombardment of Earth and Moon, a violent cataclysm that may have peaked around 4 GY, and the less intense bombardment occurring since that time. Decrease in bombardment allowed life to develop on Earth. This impact history is preserved as megaregolith layers, ejecta layers, impact melt rocks, and ancient impact breccias. The impact history for the Earth and Moon possibly had profound effects on the origin and development of life. Life may have arrived via meteorite transport from a more quiet body, such as Mars. The solar system may have experienced bursts of severe radiation from the Sun, other stars or from unknown sources. The lunar regolith has also recorded a radiation history in the form of implanted and trapped solar wind and solar flare materials and radiation damage. The Moon can be considered as a giant tape recorder containing the history of the solar system. Lunar soil generated by small impacts will be found sandwiched between layers of basalt or pyroclastic deposits. This filling constitutes a buried time capsule that is likely to contain well-preserved ancient regolith. Study of such samples will show us how the solar system has evolved and changed over time. The lunar recording can provide detailed snapshots of specific portions of solar and stellar variability.


Minerals ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 231
Author(s):  
Feng Yin ◽  
Deqiu Dai

Feldspar is the most abundant mineral in the Earth’s crust and is widely distributed in rocks. It is also one of the most common minerals in meteorites. Shock-metamorphic features in feldspar are widely used to calibrate the temperature and pressure of shock events and can also provide clues for searching for impact craters on Earth. In this study, shocked alkali feldspars in the lithic breccia and suevite from Xiuyan Impact Crater were investigated using polarizing optical microscopes, Raman spectroscopy and electron microprobes to better constrain the shock history of this crater. For this study, feldspar grains occurring in gneiss clasts in the impact breccia and four shock stages were identified, e.g., weakly shocked feldspar, moderately shocked feldspar, strongly shocked feldspar, and whole rock melting. According to the shock classification system for alkali feldspar and felsic rocks, we estimated the shock pressure (SP) and post-shock temperature (PST) histories of these gneiss clasts. Weakly shocked feldspars display irregular fractures and undulatory extinction, and their shock stage is F-S2, which indicates that SP and PST are from ~5 to ~14 GPa and ~100 °C, respectively. Moderately shocked feldspars show planar deformation features and are partially transformed into diaplectic glass, which indicates that the F-S5 shock stage of SP and PST is from ~32 to ~45 GPa and 300–900 °C. Strongly shocked feldspars that occur as vesicular glass indicate a shock stage of F-S6, and the SP and PST are 45–60 GPa and 900–1500 °C, respectively. The whole felsic rock melting occurs as mixed melt glass clast and belongs to the F-S7 stage, and SP and PST are >60 GPa and >1500 °C, respectively.


2020 ◽  
Author(s):  
Anthony Lagain ◽  
Misha Kreslavsky ◽  
Gretchen Benedix ◽  
David Baratoux ◽  
Phil Bland ◽  
...  

<p>Knowledge of collision rates through time and space is essential because meteoritic impact crater counting is the only way to determine the ages of surface geological units and processes on the solid bodies of our Solar System. All chronology models assume a constant size distribution of impactors and an exponential decay of the impact flux between 4 Ga and 2.5 Ga before the present followed by a constant rate over the last 2.5 Ga. These two assumptions are challenged by recent evidence for an increase of the impact flux on the Moon and the Earth and probably on Mars associated with a decoupling between the flux of small and large impactors over the last billion years. Here, using the results of an automatic crater detection algorithm, we investigate the evolution of the rate of formation of large impact craters (Dc ≥ 20km) on Mars and thus infer the evolution of the flux of large impactors (Di > 5km) from the size-frequency distribution of small craters superposed to the ejecta blankets of large ones.</p><p>The dating of large impact craters on Mars is limited by several factors such as the degradation of ejecta blankets and the retention rate of small craters superposed to their ejecta. We therefore focused on craters ≥20km in diameter exhibiting an ejecta blanket according to the crater database and located on a latitudinal band between ±35°. We then selected those whom their ejecta are not affected by volcanic/tectonic processes or by the formation of another large nearby impact crater. The final set includes 590 impact craters.</p><p>If one can argue the impact flux cannot be fully recorded for the last 4Ga due to resurfacing processes erasing progressively the ejecta blanket and large craters themselves, Hesperian and Noachian terrains within the 35° latitudinal band should nevertheless have retained all D≥20km craters over a portion of the Amazonian period. The CSFD of craters younger than 600Ma (113 craters) superposed to these terrains is consistent with the 600Ma isochron, supporting the fact that the entire population of craters ≥20km formed over the last 600 million years on this portion of the Martian surface has been counted completely. We therefore focused on the analysis of the impact rate evolution over this range of time from this crater sub-sample.</p><p>The formation of large impact craters is not homogeneously distributed over the time range investigated here. Our data suggest an inconsistency between the flux used to date each crater and the rate inferred from these datings, thus implying that the small and large body impact fluxes are decoupled from one another. We note also sharp peaks centered around 480, 280 and 100Ma. Preliminary statistical test show that 280Ma peak is marginally significant whereas the two others are too small to be statistically significant. This pattern would be consistent with other independent arguments for increased rate with similar intensity and timing on the Moon and Mars for which the causes are probably collisions and potentially formation of asteroid families within the main asteroid belt.</p>


Geology ◽  
2019 ◽  
Vol 47 (8) ◽  
pp. 691-694 ◽  
Author(s):  
Elizaveta Kovaleva ◽  
Dmitry A. Zamyatin ◽  
Gerlinde Habler

Abstract The Vredefort impact structure, South Africa, is a 2.02 Ga deeply eroded meteorite scar that provides an opportunity to study large impact craters at their lower stratigraphic levels. A series of anomalous granophyre dikes in the core of the structure are believed to be composed of an impact melt, which intruded downwards from the crater floor, exploiting fractures in basement rocks. However, the melt emplacement mechanisms and timing are not constrained. The granophyre dikes contain supracrustal xenoliths captured at higher levels, presently eroded. By studying these clasts and shocked minerals within, we can better understand the nature of dikes, magnitude of impact melt movement, conditions that affected target rocks near the impacted surface, and erosional rates. We report “former reidite in granular neoblastic” (FRIGN) zircon within a granite clast enclosed in the granophyre. High-pressure zircon transformation to reidite (ZrSiO4) and reversion to zircon resulted in zircon grains composed of fine neoblasts (∼0.5–3 µm) with two or three orthogonal orientations. Our finding provides new independent constraints on the emplacement history of Vredefort granophyre dikes. Based on the environment, where other FRIGN zircons are found (impact glasses and melts), the clast was possibly captured near the top of the impact melt sheet and transported to the lowermost levels of the structure, traveling some 8–10 km. Our finding not only provides the highest-pressure shock estimates thus far discovered in the Vredefort structure (≥30 GPa), but also shows that microscopic evidence of high shock pressures can be found within large eroded craters at their lowest stratigraphic levels.


1991 ◽  
Vol 126 ◽  
pp. 41-44
Author(s):  
Duncan Steel

AbstractIf the impact record upon LDEF is to be interpreted so as to determine the flux, orbits, sizes and compositions of natural meteoroids and dust, and space debris, then it is necessary to relate the microcraters and perforations recorded to the likely source orbit of the particle in each case. Here a single-particle approach is used to calculate the relative impact probabilities upon six orthogonal faces of LDEF for particles coming from heliocentric orbits confined to the ecliptic; the results are presented as functions of impact velocity and impact angle for each face. The flux from geocentric orbits to the Space-and Earth-pointing faces is much lower than to the other faces; experiments positioned on those faces are thus likely to be less contaminated by space debris. Particles from heliocentric orbits can impact both the Space and Earth faces, but the latter is less likely to be hit due to the shadowing effect of the planet. The cratering ratios for the East (or leading) face compared to the West (or trailing) and the Earth-directed faces are strongly dependent upon the velocities of the particles and can therefore indicate of the velocity distribution of meteoroids and interplanetary dust.


Sign in / Sign up

Export Citation Format

Share Document