scholarly journals Cover crops reduce weed biomass but maize-soybean management limits their weed suppression.

2020 ◽  
Author(s):  
Virginia Nichols ◽  
Rafael Martinez-Feria ◽  
David Weisberger ◽  
Sarah Carlson ◽  
Bruno Basso ◽  
...  

Abstract In addition to soil health and conservation benefits, cover crops (CCs) may offer weed control in the Midwestern United States (Midwest), but individual studies report varying effects. We conducted a meta-analysis of studies measuring weed biomass (WBIO) or density (WDEN) in paired CC and no-cover treatments in maize (Zea mays)-soybean (Glycine max) rotations in the Midwest. Fifteen studies provided 123 paired comparisons of WBIO and 119 of WDEN. Only grass CCs significantly reduced WBIO, while no CC reduced WDEN. We found no evidence CC management factors (e.g. termination method) directly impacted outcomes. Our dataset showed a 75% reduction in WBIO requires ≥5 Mg ha-1 of CC. Simulations from a process-based model (SALUS) indicated achieving 5 Mg ha-1 requires substantially earlier fall planting and later spring termination in most years, conflicting with typical cash-crop planting and harvesting. We conclude CCs significantly reduce WBIO, but current CC management constraints render these reductions variable and uncertain.

Author(s):  
Katja Koehler-Cole ◽  
Christopher A. Proctor ◽  
Roger W. Elmore ◽  
David A. Wedin

Abstract Replacing tillage with cover crops (CC) for weed management in corn (Zea mays L.)-soybean [Glycine max (L.) Merr.] systems with mechanical weed control has many soil health benefits but in the western Corn Belt, CC establishment after harvest is hampered by cold temperatures, limited labor and few compatible CC species. Spring-planted CC may be an alternative, but information is lacking on suitable CC species. Our objective was to evaluate four spring-planted CC with respect to biomass production and weed suppression, concurrent with CC growth and post-termination. Cover crop species tested were oat (Avena sativa L.), barley (Hordeum vulgare L.), brown mustard [Brassica juncea (L.) Czern.] and yellow mustard (Brassica hirta Moench). They were compared to no-CC treatments that were either tilled pre- and post-planting of soybean (no-CC tilled) or not tilled at all (no-CC weedy). CC were planted in late March to early April, terminated 52–59 days later using an undercutter, and soybean was planted within a week. The experiment had a randomized complete block design with four replications and was repeated for 3 years. Mustards and small grains produced similar amounts of biomass (1.54 Mg ha−1) but mustard biomass production was more consistent (0.85–2.72 Mg ha−1) than that of the small grains (0.35–3.81 Mg ha−1). Relative to the no-CC weedy treatment, mustards suppressed concurrent weed biomass in two out of 3 years, by 31–97%, and small grains suppressed concurrent weed biomass in only 1 year, by 98%. Six weeks after soybean planting, small grains suppressed weed biomass in one out of 3 years, by 79% relative to the no-CC weedy treatment, but mustards did not provide significant weed suppression. The no-CC tilled treatment suppressed weeds each year relative to the no-CC weedy treatment, on average 87%. The ineffective weed control by CC reduced soybean biomass by about 50% six weeks after planting. While spring-planted CC have the potential for pre-plant weed control, they do not provide adequate early season weed suppression for soybean.


Weed Science ◽  
2006 ◽  
Vol 54 (02) ◽  
pp. 326-334 ◽  
Author(s):  
Kevin S. Charles ◽  
Mathieu Ngouajio ◽  
Darryl D. Warncke ◽  
Kenneth L. Poff ◽  
Mary K. Hausbeck

Field studies were carried out in Laingsburg, MI, from 2002 to 2004 on Houghton muck soil to assess the impacts of cover crops and soil fertility regimes on weed populations and celery yield. The cover crops were oilseed radish, cereal rye, hairy vetch, and a bare ground control. The fertility rates were full (180, 90, and 450 kg ha−1nitrogen [N], phosphorus pentoxide [P2O5], and potassium oxide [K2O], respectively), half (90, 45, and 225 kg ha−1N, P2O5, and K2O, respectively), and low (90 kg ha−1N). Each cover crop treatment was combined with the low or half rate of fertilizer. An additional treatment with bare ground plus the full rate of fertilizer was added as standard practice. Treatments were maintained in the same location for the duration of the study. Major weed species were common chickweed, prostrate pigweed, shepherd's-purse, common purslane, and yellow nutsedge. Each year, oilseed radish consistently produced the greatest biomass and provided over 98% early season weed biomass suppression. Hairy vetch and cereal rye provided about 70% weed suppression in early spring. Soil fertility level affected weed populations during the 2004 growing season. In 2004, weed biomass in treatments without cover crops or with vetch increased when greater amounts of fertilizer were applied. Within individual fertility levels, higher celery yields were recorded in the oilseed radish plots. For example, in the low fertility rate, celery yield was 34.8, 29.2, 23.9, and 24.4 ton ha−1in the oilseed radish, cereal rye, hairy vetch, and control plots, respectively in 2003. Overall, the results of this experiment indicate that when included in a system where hoeing and hand-weeding are the only weed control methods, cover crops can successfully improve weed management and celery yield on muck soils, allowing reduced fertilizer inputs.


Weed Science ◽  
2021 ◽  
pp. 1-26
Author(s):  
Roberto Botelho Ferraz Branco ◽  
Fernando de Carvalho ◽  
João Paulo de Oliveira ◽  
Pedro Luis da Costa Alves

Abstract Cover crop residue left on the soil surface as organic mulch in no-tillage crop production provides several environmental benefits, including weed suppression. Thus, many farmers who use cover crops attempt to reduce the use of agricultural inputs, especially herbicides. Therefore, our objectives were to study the potential of different cover crop species to suppress weeds and produce an in situ organic mulch, and evaluate the effect of the organic mulch with and without spraying glyphosate on weed suppression for vegetable (tomato (Solanum lycopersicum L. and broccoli (Brassica oleracea L. var. botrytis) growth and yield. Five cover crop treatments (sunn hemp (Crotalaria juncea L.), jack bean [Canavalia ensiformis (L.) DC.], pearl millet [Pennisetum glaucum (L.) R. Br.], grain sorghum [Sorghum bicolor (L.) Moench ssp. bicolor] and a no-cover crop (control)) were used in the main plots; and spraying or no spraying glyphosate on the flattened cover crop in the sub plots of split-plot experimental design. Organic mulch from pearl millet, sorghum and sunn hemp resulted in lower weed biomass during the early season of both tomato and broccoli than jack bean and no-cover crop (control). Spraying glyphosate after roller crimping reduced weed biomass by 103 g m−2 and 20 g m−2 by 45 and 60 days after transplanting (DAT) of tomato, respectively and resulted in a better tomato yield compared to non spraying. Glyphosate reduced weed biomass by 110 g m−2 in the early season of broccoli (30 DAT), but did not affect yield. Terminating high biomass cover crops with a roller crimper is a promising technique for weed management in vegetable crops, which has the potential to reduce or even eliminate the need for herbicide.


2018 ◽  
Vol 34 (5) ◽  
pp. 439-446 ◽  
Author(s):  
David Robb ◽  
Geoff Zehnder ◽  
Robin Kloot ◽  
William Bridges ◽  
Dara Park

AbstractOrganic vegetable growers rely heavily on mechanical methods such as tillage and other forms of labor-intensive soil cultivation for weed management despite the negative effects to soil health associated with intensive soil disturbance. The use of cover crops and no-till (NT) vegetable production represents an alternative approach to weed control that can enhance rather than degrade soil health; however, there are challenges inherent with this practice and previous results in vegetable production have been mixed. Field experiments were conducted over 2 yr at the Clemson Student Organic Farm to examine the effects of tillage [NT versus conventional tillage (CT)] on weed development and management in organic tomato and summer squash production under different nitrogen (N) fertility regimes, and to assess soil N dynamics in both systems. Squash yields were similar between tillage treatments in both years. NT tomato yields were 43% greater than CT yields in 2014, whereas CT tomato yields were 46% greater than NT yields in 2015. Squash and tomato yields per unit of management labor (time) were significantly greater in NT compared with CT treatments for both years. There were no statistical differences in squash and tomato yields between N fertilization treatments in either year. Pre- and post-season soil N results were mixed. Pre-season soil N levels were significantly higher in NT tomato plots in 2014 but similar between tillage treatments in tomato plots in 2015 and in squash plots both years. Post-season soil N levels in tomato plots were similar between tillage treatments both years. Post-season soil N levels were significantly higher in NT squash plots in 2014 and in CT squash plots in 2015. Roller-crimped NT mulches provided adequate early-season weed suppression in both years and saved considerable weed management and seedbed preparation labor. Overall, the results demonstrated that organic NT is a viable method for reduced tillage summer vegetable production in the southeastern Piedmont region.


Agronomy ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 319 ◽  
Author(s):  
Laura Vincent-Caboud ◽  
Léa Vereecke ◽  
Erin Silva ◽  
Joséphine Peigné

Organic farming relies heavily on tillage for weed management, however, intensive soil disturbance can have detrimental impacts on soil quality. Cover crop-based rotational tillage (CCBRT), a practice that reduces the need for tillage and cultivation through the creation of cover crop mulches, has emerged as an alternative weed management practice in organic cropping systems. In this study, CCBRT systems using cereal rye and triticale grain species are evaluated with organic soybean directly seeded into a rolled cover crop. Cover crop biomass, weed biomass, and soybean yields were evaluated to assess the effects of cereal rye and winter triticale cover crops on weed suppression and yields. From 2016 to 2018, trials were conducted at six locations in Wisconsin, USA, and Southern France. While cover crop biomass did not differ among the cereal grain species tested, the use of cereal rye as the cover crop resulted in higher soybean yields (2.7 t ha−1 vs. 2.2 t ha−1) and greater weed suppression, both at soybean emergence (231 vs. 577 kg ha−1 of weed biomass) and just prior to soybean harvest (1178 vs. 1545 kg ha−1). On four out of six sites, cover crop biomass was lower than the reported optimal (<8000 kg ha−1) needed to suppress weeds throughout soybean season. Environmental conditions, in tandem with agronomic decisions (e.g., seeding dates, cultivar, planters, etc.), influenced the ability of the cover crop to suppress weeds regardless of the species used. In a changing climate, future research should focus on establishing flexible decision support tools based on multi-tactic cover crop management to ensure more consistent results with respect to cover crop growth, weed suppression, and crop yields.


Crop Science ◽  
2019 ◽  
Vol 59 (3) ◽  
pp. 1248-1261 ◽  
Author(s):  
Heather D. Toler ◽  
Robert M. Augé ◽  
Victoria Benelli ◽  
Fred L. Allen ◽  
Amanda J. Ashworth

age ◽  
2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Marcio R. Nunes ◽  
Douglas L. Karlen ◽  
Thomas B. Moorman ◽  
Cynthia A. Cambardella

HortScience ◽  
2004 ◽  
Vol 39 (6) ◽  
pp. 1262-1266 ◽  
Author(s):  
Lidia M. Carrera ◽  
Aref A. Abdul-Baki ◽  
John R. Teasdale

Cover crops combined with conservation tillage practices can minimize chemical inputs and improve soil quality, soil water-holding capacity, weed suppression and crop yields. No-tillage production of sweet corn (Zea mays var. `Silver Queen') was studied for 2 years at the USDA Beltsville Agricultural Research Center, Md., to determine cover crop management practices that maximize yield and suppress weeds. Cover crop treatments were hairy vetch (Vicia villosa Roth), rye (Secale cereale L.) and hairy vetch mixture, and bare soil (no cover crop). There were three cover crop killing methods: mowing, rolling or contact herbicide paraquat. All plots were treated with or without atrazine and metolachlor after planting. There was a 23% reduction in sweet corn plant population in the rye-hairy vetch mixture compared to bare soil. Averaged over both years, sweet corn yield in hairy vetch treatments was 43% greater than in bare soil, whereas yield in the rye-hairy vetch mixture was 30% greater than in bare soil. There were no significant main effects of kill method or significant interactions between kill method and cover crop on yield. Sweet corn yields were not different for hairy vetch or rye-hairy vetch treatments with or without atrazine and metolachlor. However, yield in bare soil without the herbicides atrazine and metolachor were reduced by 63% compared to bare soil with these herbicides. When no atrazine and metolachlor were applied, weed biomass was reduced in cover crops compared to the bare soil. Regression analysis showed greater yield loss per unit of weed biomass for bare soil than for the vetch or rye-hairy vetch mixture. This analysis suggests that cover crops increased sweet corn yield in the absence of atrazine and metolachlor not only by reducing weed biomass, but also by increasing the competitiveness of corn to weeds at any given biomass.


Weed Science ◽  
2017 ◽  
Vol 65 (3) ◽  
pp. 426-439 ◽  
Author(s):  
Jeffrey A. Liebert ◽  
Antonio DiTommaso ◽  
Matthew R. Ryan

Maximizing cereal rye biomass has been recommended for weed suppression in cover crop–based organic no-till planted soybean; however, achieving high biomass can be challenging, and thick mulch can interfere with soybean seed placement. An experiment was conducted from 2012 to 2014 in New York to test whether mixing barley and cereal rye would (1) increase weed suppression via enhanced shading prior to termination and (2) provide acceptable weed suppression at lower cover crop biomass levels compared with cereal rye alone. This experiment was also designed to assess high-residue cultivation as a supplemental weed management tool. Barley and cereal rye were seeded in a replacement series, and a split-block design with four replications was used with management treatments as main plots and cover crop seeding ratio treatments (barley:cereal rye, 0:100, 50:50, and 100:0) as subplots. Management treatments included high-residue cultivation and standard no-till management without high-residue cultivation. Despite wider leaves in barley, mixing the species did not increase shading, and cereal rye dominated cover crop biomass in the 50:50 mixtures in 2013 and 2014, representing 82 and 93% of the biomass, respectively. Across all treatments, average weed biomass (primarily common ragweed, giant foxtail, and yellow foxtail) in late summer ranged from 0.5 to 1.1 Mg ha−1in 2013 and 0.6 to 1.3 Mg ha−1in 2014, and weed biomass tended to decrease as the proportion of cereal rye, and thus total cover crop biomass, increased. However, soybean population also decreased by 29,100 plants ha−1for every 1 Mg ha−1increase in cover crop biomass in 2013 (P=0.05). There was no relationship between cover crop biomass and soybean population in 2014 (P=0.35). Soybean yield under no-till management averaged 2.9 Mg ha−1in 2013 and 2.6 Mg ha−1in 2014 and was not affected by cover crop ratio or management treatment. Partial correlation analyses demonstrated that shading from cover crops prior to termination explained more variation in weed biomass than cover crop biomass. Our results indicate that cover crop management practices that enhance shading at slightly lower cover crop biomass levels might reduce the challenges associated with excessive biomass production without sacrificing weed suppression in organic no-till planted soybean.


Sign in / Sign up

Export Citation Format

Share Document