Ecosystem Diversity of Field Crops, Garden Crops and Aquatic Plants in Nepal

2019 ◽  
Author(s):  
Jiban Shrestha

Ecosystem diversity is related to the variations of ecosystems in a region. In this paper, we discussed about habitat classification of field crops, garden crops and aquatic plants. Natural, terrestrial and aquatic habitats are types of habitats based on agro ecosystem. Based on habitat, the field crops are classified as upland, low land and submerged. Based on type of land, garden crops are categorized into forest, shrub, fallow and home garden. Similarly, aquatic plants are grouped into floating, emergent and submergence. Restoration and maintenance of ecosystem diversity can be maintained by practices such as nutrient management, residue management, conservation agriculture and water management. Ecosystem diversity is now, threatened by human activities. Long term strategies should be implemented to protect the natural habitats to conserve endangered crop species. The direct pressure on natural habitats should be reduced for safeguarding ecosystems, species and genetic diversity.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yang Su ◽  
Benoit Gabrielle ◽  
Damien Beillouin ◽  
David Makowski

AbstractConservation agriculture (CA) has been promoted to mitigate climate change, reduce soil erosion, and provide a variety of ecosystem services. Yet, its impacts on crop yields remains controversial. To gain further insight, we mapped the probability of yield gain when switching from conventional tillage systems (CT) to CA worldwide. Relative yield changes were estimated with machine learning algorithms trained by 4403 paired yield observations on 8 crop species extracted from 413 publications. CA has better productive performance than no-till system (NT), and it stands a more than 50% chance to outperform CT in dryer regions of the world, especially with proper agricultural management practices. Residue retention has the largest positive impact on CA productivity comparing to other management practices. The variations in the productivity of CA and NT across geographical and climatical regions were illustrated on global maps. CA appears as a sustainable agricultural practice if targeted at specific climatic regions and crop species.


2021 ◽  
Vol 7 ◽  
pp. 20-26
Author(s):  
Anurag Ajay ◽  
Peter Craufurd ◽  
Sachin Sharma

Approximately 7,600 wheat plots were surveyed and geo-tagged in the 2017-18 winter or rabi season in Bihar and eastern Uttar Pradesh (UP) in India to capture farmers’ wheat production practices at the landscape level. A two-stage cluster sampling method, based on Census data and electoral rolls, was used to identify 210 wheat farmers in each of 40 districts. The survey, implemented in Open Data Kit (ODK), recorded 226 variables covering major crop production factors such as previous crop, residue management, crop establishment method, variety and seed sources, nutrient management, irrigation management, weed flora and their management, harvesting method and farmer reported yield. Crop cuts were also made in 10% of fields. Data were very carefully checked with enumerators. These data should be very useful for technology targeting, yield prediction and other spatial analyses.


2018 ◽  
Vol 6 (2) ◽  
pp. 164-168 ◽  
Author(s):  
Bibek Thapa ◽  
Keshab Raj Pande ◽  
Baburam Khanal ◽  
Santosh Marahatta

A field experiment was conducted to evaluate the effect of tillage practices, residue management and cropping system on soil properties at NMRP, Rampur, Chitwan from November 2015 to April 2016. The experiment was laid on Strip split design with combination of 12 different treatments i.e, zero tillage & conventional tillage as main plot in the strip, residue retention & residue removal as sub-plot factor and maize – wheat, maize + soybean – wheat & soybean – wheat cropping system as sub-sub plot factor. Three replications of the treatments were made. Soil sample before experiment and after harvest of wheat was taken (0-15cm). The experiment showed significant effect of zero tillage on organic carbon (2.169%) and on total soil nitrogen (0.112 %). Zero tillage with retention of residues is valuable tool for the conservation agriculture and helps in sustainability of soil however long-term research for the tillage management and residue retention should be conducted to highlight the major effects on change in properties of soil.Int. J. Appl. Sci. Biotechnol. Vol 6(2): 164-168 


SOIL ◽  
2016 ◽  
Vol 2 (2) ◽  
pp. 147-162 ◽  
Author(s):  
Ariane Krause ◽  
Thomas Nehls ◽  
Eckhard George ◽  
Martin Kaupenjohann

Abstract. Andosols require the regular application of phosphorus (P) to sustain crop productivity. On an Andosol in NW Tanzania, we studied the short-term effects of amending standard compost, biogas slurry and CaSa compost (containing biochar and sanitized human excreta) on (i) the soil's physico-chemical properties, on (ii) biomass growth and crop productivity, and on (iii) the plants' nutrient status. The practice-oriented experiment design included the intercropping of seven locally grown crop species planted on 9 m2 plots with five repetitions arranged as a Latin rectangle. Differences in plant growth (biomass production and crop yield, e.g., of Zea mays) and crop nutrition (total C, N, P, K, Ca, Mg, Zn, etc.) were related to pH, CEC (cation exchange capacity), total C and the availability of nutrients (N, P, K, etc.) and water (water retention characteristics, bulk density, etc.) in the soil. None of the amendments had any significant effect on soil water availability, so the observed variations in crop yield and plant nutrition are attributed to nutrient availability. Applying CaSa compost increased the soil pH from 5.3 to 5.9 and the level of available P from 0.5 to 4.4 mg per kg. Compared to the control, adding biogas slurry, standard compost and CaSa compost increased the aboveground biomass of Zea mays by, respectively, 140, 154 and 211 %. The grain yields of maize on soil treated with biogas slurry, standard compost and CaSa compost were, respectively, 2.63, 3.18 and 4.40 t ha−1, compared to only 1.10 t ha−1 on unamended plots. All treatments enhanced crop productivity and increased the uptake of nutrients into the maize grains. The CaSa compost was most effective in mitigating P deficiency and soil acidification. We conclude that all treatments are viable as a substitute for synthetic fertilizers. Nevertheless, further steps are required to integrate the tested soil amendments into farm-scale nutrient management and to balance the additions and removals of nutrients, so that the cycle can be closed.


2016 ◽  
Vol 204 ◽  
pp. 161-171 ◽  
Author(s):  
E. Radicetti ◽  
R. Massantini ◽  
E. Campiglia ◽  
R. Mancinelli ◽  
S. Ferri ◽  
...  

2021 ◽  
Author(s):  
Kenta Shirasawa ◽  
Shunichi Kosugi ◽  
Kazuhiro Sasaki ◽  
Andrea Ghelfi ◽  
Koei Okazaki ◽  
...  

AbstractWild plants are often tolerant to biotic and abiotic stresses in their natural environments, whereas domesticated plants such as crops frequently lack such resilience. This difference is thought to be due to the high levels of genome heterozygosity in wild plant populations and the low levels of heterozygosity in domesticated crop species. In this study, common vetch (Vicia sativa) was used as a model to examine this hypothesis. The common vetch genome (2n = 14) was estimated as 1.8 Gb in size. Genome sequencing produced a reference assembly that spanned 1.5 Gb, from which 31,146 genes were predicted. Using this sequence as a reference, 24,118 single nucleotide polymorphisms were discovered in 1,243 plants from 12 natural common vetch populations in Japan. Common vetch genomes exhibited high heterozygosity at the population level, with lower levels of heterozygosity observed at specific genome regions. Such patterns of heterozygosity are thought to be essential for adaptation to different environments. These findings suggest that high heterozygosity at the population level would be required for wild plants to survive under natural conditions while allowing important gene loci to be fixed to adapt the conditions. The resources generated in this study will provide insights into de novo domestication of wild plants and agricultural enhancement.HighlightSequence analysis of the common vetch (Vicia sativa) genome and SNP genotyping across natural populations revealed nucleotide diversity levels associated with native population environments.


2003 ◽  
Vol 13 (4) ◽  
pp. 610-616 ◽  
Author(s):  
Renuka Rao ◽  
Yuncong Li

The review of effects of excessive soil water on performance of various vegetable crops and selected field crops indicates that in areas where temporary flooding hazards are expected during the growing season, crops can be selected on their relative ability to tolerate excessive moisture. Field crops are generally less sensitive than vegetable crops in terms of yield. In addition to the choice of crop species, planting dates could be shifted when possible by delaying dates of sowing or planting to avoid probable periods of flooding during the sensitive growth stages. In most instances, crops are more sensitive at their early developmental phase than at the later stages in terms of yield. Soil management practices like ridging and furrowing or making raised beds before planting is recommended. In addition, amelioration with foliar application of chemicals like nutrients, growth hormones and fungicides is also recommended to overcome nutritional deficiencies, hormonal imbalances and disease infections. Every effort of amelioration should be exerted at the earliest opportunity, since water damage to crops becomes more severe with longer flooding duration.


2015 ◽  
Vol 2 (2) ◽  
pp. 1221-1261 ◽  
Author(s):  
A. Krause ◽  
T. Nehls ◽  
E. George ◽  
M. Kaupenjohann

Abstract. Andosols require the regular application of phosphorus (P) to sustain crop productivity. In a practice oriented field experiment at an Andosol site in NW Tanzania, the effects of various soil amendments (standard compost, urine, biogas slurry and CaSa-compost [biochar and sanitized human excreta]) on (i) the productivity of locally grown crop species, on (ii) the plants' nutrient status and on (iii) the soil's physico-chemical properties were studied. None of the amendments had any significant effect on soil moisture, so the observed variation in crop yield and plant nutrition reflected differences in nutrient availability. The application of CaSa-compost increased the level of available P in the top-soil from 0.5 to 4.4 mg kg−1 and the soil pH from 5.3 to 5.9. Treatment with biogas slurry, standard compost and CaSa-compost increased the above-ground biomass of Zea mays by, respectively, 140, 154 and 211 %. The grain yields of maize on soil treated with biogas slurry, standard compost and CaSa-compost were, respectively, 2.63, 3.18 and 4.40 t ha−1, compared to only 1.10 t ha−1 on unamended plots. All treatments enhanced crop productivity and increased the uptake of nutrients into the maize grains. The CaSa-compost was especially effective in mitigating P deficiency and soil acidification. We conclude that all treatments are viable as substitute for synthetic fertilizers. However, further steps are required to integrate the tested soil amendments into farm-scale nutrient management and to balance the additions and removals of nutrients, so that the loop can be closed.


Sign in / Sign up

Export Citation Format

Share Document