scholarly journals Spatial variation of groundwater response to multiple drivers in a depleting alluvial aquifer system, northwestern India

2019 ◽  
Author(s):  
Wout van Dijk ◽  
Alex Densmore ◽  
Chris Jackson ◽  
Jonathan Mackay ◽  
Suneel Joshi ◽  
...  
2019 ◽  
Vol 44 (1) ◽  
pp. 94-119 ◽  
Author(s):  
Wout M van Dijk ◽  
Alexander L Densmore ◽  
Christopher R Jackson ◽  
Jonathan D Mackay ◽  
Suneel K Joshi ◽  
...  

Unsustainable exploitation of groundwater in northwestern India has led to extreme but spatially variable depletion of the alluvial aquifer system in the region. Mitigation and management of groundwater resources require an understanding of the drivers behind the pattern and magnitude of groundwater depletion, but a regional perspective on these drivers has been lacking. The objectives of this study are to (1) understand the extent to which the observed pattern of groundwater level change can be explained by the drivers of precipitation, potential evapotranspiration, abstraction, and canal irrigation, and (2) understand how the impacts of these drivers may vary depending on the underlying geological heterogeneity of the system. We used a transfer function-noise (TFN) time series approach to quantify the effect of the various driver components in the period 1974–2010, based on predefined impulse response functions ( θ). The dynamic response to abstraction, summarized by the zeroth moment of the response M0, is spatially variable but is generally large across the proximal and middle parts of the study area, particularly where abstraction is high but alluvial aquifer bodies are less abundant. In contrast, the precipitation response is rapid and fairly uniform across the study area. At larger distances from the Himalayan front, observed groundwater level rise can be explained predominantly by canal irrigation. We conclude that the geological heterogeneity of the aquifer system, which is imposed by the geomorphic setting, affects the response of the aquifer system to the imposed drivers. This heterogeneity thus provides a useful framework that can guide mitigation efforts; for example, efforts to decrease abstraction rates should be focused on areas with thinner and less abundant aquifer bodies.


Geosciences ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 92
Author(s):  
Uroš Barudžija ◽  
Josipa Velić ◽  
Tomislav Malvić ◽  
Neven Trenc ◽  
Nikolina Matovinović Božinović

Morphometric analysis of Holocene pebbles from Sava River gravel in NW Croatia revealed shape distributions as observed along a 30 km long watercourse. Limestones, dolomites, and sandstones were identified as the major (>4%) and effusive magmatics in this alluvial aquifer system in Zagreb, with cherts and tuffs as minor pebble lithologies (up to 4%). Their distributions mainly indicate distant Alpine provenance for carbonate pebbles (limestone and dolomite) and local input for sandstones and minor lithotypes, laterally from the Samoborska Gora and Medvednica mountain. Carbonates are predominantly disc- and sphere-shaped, implying distant sources. Scattered distributions of pebble shapes (sphere, disc, blade, and rod) for sandstones and minor lithotypes possibly indicate multiple sources, some of them probably local. The tentatively interpreted “original sedimentary environments” for the main pebble lithotypes (calculated from their flatness ratios) possibly indicate that they are predominantly lake beach pebbles, followed by moraine and riverbed pebbles. However, these results should be strongly questioned.


2014 ◽  
Vol 73 (10) ◽  
pp. 6195-6212 ◽  
Author(s):  
K. Boukhari ◽  
Y. Fakir ◽  
T. Y. Stigter ◽  
Y. Hajhouji ◽  
G. Boulet

Author(s):  
Christopher Papadopoulos ◽  
Mike Spiliotis ◽  
Ioannis Gkiougkis ◽  
Fotios Pliakas ◽  
Basil Papadopoulos

Abstract This paper studies, through the principles of fuzzy set theory, groundwater response to meteorological drought in the case of an aquifer system located in the plains at the southeast of Xanthi, NE Greece. Meteorological drought is expressed through standardized Reconnaissance Drought Index (RDISt) and Standardized Precipitation Index (SPI), which are calculated for various reference periods. These drought indices are considered as independent variables in multiple fuzzy linear regression based on Tanaka's model, while the observed water table regarding two areas is used as a dependent variable. The fuzzy linear regression of Tanaka is characterized by the inclusion constraints where all the observed data must be included in the produced fuzzy band. Hence, each fuzzy output can get an interval of values where a membership degree corresponds to each of them. A modification of the Tanaka model by adding constraints is proposed in order to avoid irrational behavior. The results show that there was a significant influence of the meteorological drought of the previous hydrological year, while geology plays an important role. Furthermore, the use of RDISt improves the results of fuzzy linear regressions in all cases. Two suitability measures and a measure of comparison between fuzzy numbers are used.


Sign in / Sign up

Export Citation Format

Share Document