scholarly journals ICESat-2 Reservoir Applications: A case study from the largest man-made reservoir in India

2021 ◽  
Author(s):  
Surajit Ghosh ◽  
Atul Kaushik

Monitoring inland water levels is crucial for understanding hydrological processes to climate change impact leading to policy implementation. Satellite altimetry has proved to be an excellent technique to precisely measure water levels of rivers, lakes, and other inland water bodies. The ATL13 product of ICESat-2 space-borne LiDAR is solely dedicated to inland water bodies. The water surface heights were derived from ICESat-2's strong beams, and performance was assessed with respect to reservoir gauge observations. Statistical measurements were used to understand the agreement (R2= 0.99, %RMSE=0.08) among the datasets. An R2 value of 0.99 was observed between ICESat-2 derived water level anomaly and the reservoir storage anomaly. This study provides a unique opportunity to utilize the ATL13 data product to study reservoir water level variation and estimate the reservoir's storage. The methodology can also be helpful to understand the reservoir storage variation in a data-sparse region.

2021 ◽  
Vol 13 (14) ◽  
pp. 2744
Author(s):  
Nan Xu ◽  
Huiying Zheng ◽  
Yue Ma ◽  
Jian Yang ◽  
Xinyuan Liu ◽  
...  

Accurate and detailed information on lake/reservoir water levels and temporal changes around the globe is urgently required for water resource management and related studies. The traditional satellite radar altimeters normally monitor water level changes of large lakes and reservoirs (i.e., greater than 1 km2) around the world. Fortunately, the recent Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) makes it possible to monitor water level changes for some small lakes and reservoirs (i.e., less than 1 km2). ICESat-2 ATL13 products provide observations of inland water surface heights, which are suitable for water level estimation at a global scale. In this study, ICESat-2 ATL13 products were used to conduct a global estimation and assessment of lake/reservoir water level changes. We produced monthly water levels for 13,843 lakes and reservoirs with areas greater than 0.1 km2 and all-season ATL13 products across the globe, in which 2257 targets are smaller than 1 km2. In total, the average valid number of months covered by ICESat-2 is 5.41 months and only 204 of 13,843 lakes and reservoirs have water levels in all the months in 2019. In situ water level data from 21 gauge stations across the United States and 12 gauge stations across Australia were collected to assess the monthly lake/reservoir water levels, which exhibited a high accuracy (RMSE = 0.08 m, r = 0.999). According to comparisons between the monthly water levels and changes from ATL08 products in another study and ATL13 products in this study, we found that both products can accurately estimate the monthly water level of lakes and reservoirs, but water levels derived from ATL13 products exhibited a higher accuracy compared with water levels derived from ATL08 products (RMSE = 0.28 m, r = 0.999). In general, the ATL13 product is more convenient because the HydroLAKES mask of inland water bodies, the orthometric height (with respect to the EGM2008 geoid) of water surfaces, and several data quality parameters specific to water surfaces were involved in the ATL13 product.


Water ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2011
Author(s):  
Pablo Páliz Larrea ◽  
Xavier Zapata Ríos ◽  
Lenin Campozano Parra

Despite the importance of dams for water distribution of various uses, adequate forecasting on a day-to-day scale is still in great need of intensive study worldwide. Machine learning models have had a wide application in water resource studies and have shown satisfactory results, including the time series forecasting of water levels and dam flows. In this study, neural network models (NN) and adaptive neuro-fuzzy inference systems (ANFIS) models were generated to forecast the water level of the Salve Faccha reservoir, which supplies water to Quito, the Capital of Ecuador. For NN, a non-linear input–output net with a maximum delay of 13 days was used with variation in the number of nodes and hidden layers. For ANFIS, after up to four days of delay, the subtractive clustering algorithm was used with a hyperparameter variation from 0.5 to 0.8. The results indicate that precipitation was not influencing input in the prediction of the reservoir water level. The best neural network and ANFIS models showed high performance, with a r > 0.95, a Nash index > 0.95, and a RMSE < 0.1. The best the neural network model was t + 4, and the best ANFIS model was model t + 6.


Water ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 3576
Author(s):  
Jun Zhang ◽  
Yaowu Min ◽  
Baofei Feng ◽  
Weixin Duan

In today’s reservoir operation study, it is urgent to solve the issues on improving flood resource utilization, maximizing reservoir impoundment, and guaranteeing water supply through real-time regulation optimization under the premise of ensuring flood control safety and taking risks properly. Based on previous studies, the key real-time operation technologies for dynamic control of reservoir water levels in flood season are summarized. The Danjiangkou Reservoir was taken as an example, the division of flood stages, reservoir water level requirements for improving water supply guarantee, dynamic control indexes of reservoir water level for beneficial use in stages during the flood season, and flood control dispatching indexes are proposed. Moreover, a practicable real-time flood forecast operation scheme for Danjiangkou Reservoir was compiled. Its application in 2017 indicated that the established scheme can provide strong technical support to ensure the overall benefits of Danjiangkou Reservoir, including flood control, water supply, and power generation.


Author(s):  
Ming-liang Chen ◽  
Xing-guo Yang ◽  
Shun-chao Qi ◽  
Hai-bo Li ◽  
Jia-wen Zhou

Occurrence of a reservoir landslide and its potential secondary hazards near a dam can result in significant losses and casualties, such as those that resulted from the Vajont landslide. In this study, a cataclinal rock slope in the Maoergai reservoir was taken as a case to study the characteristics of the gravitational deformation process and to analyze the potential threat. The stability of rock slope is analyzed by the limit equilibrium method, and the potential landslide movement and subsequent waves are also simulated. Results indicate that lithology, geological structure, reservoir water level changes and artificial activities all play an important role for the large deformation of rock slope deformation, which is characterized by a combination of bending-toppling and principally shear-slip. Pre-calculations of potential threats indicated that the impact of a landslide wave would be greater at dead water levels than at the normal water level and could result in blockage of the inlet to the water diversion structure on the opposite right bank. These findings provide implication for the control of reservoir rock slopes: (i) serious attention should be paid to the influence of water on rock strength in early and (ii) infiltration must be prevented during water level rise.Thematic collection: This article is part of the Role of water in destabilizing slopes collection available at: https://www.lyellcollection.org/cc/Role-of-water-in-destabilizing-slopes


Author(s):  
Qi Gao ◽  
Eduardo Makhoul ◽  
Maria Jose Escorihuela ◽  
Mehrez Zribi ◽  
Pere Quintana Seguí ◽  
...  

Satellite altimeters have been used to monitor river and reservoir water levels, from which water storage estimates can be derived. Inland water altimetry can therefore play an important role in continental water resource management. Traditionally, satellite altimeters were designed to monitor homogeneous surfaces such as oceans or ice sheets, resulting in a poor performance over small inland water bodies due to the contribution from land contamination in the returned waveforms. The advent of synthetic aperture radar (SAR) altimetry (with its improved along-track spatial resolution) has enabled the measurement of inland water levels with a better accuracy and an increased spatial resolution. This paper presents three specialized algorithms or retrackers to retrieve water levels from SAR altimeter data over inland water bodies dedicated to minimizing land contamination from the waveforms. The performances of the proposed waveform portion selection method with three retrackers, namely, the threshold retracker, Offset Centre of Gravity (OCOG) retracker and 2-step physical-based retracker, are compared. Time series of water levels are retrieved for water bodies in the Ebro River basin (Spain). The results show good agreement with in situ measurements from the Ebro Reservoir (width is approximately 1.8 km) and Ribarroja Reservoir (width is approximately 400 m) with un-biased root-mean-square errors (RMSEs) of approximately 0.28 m and 0.16 m, respectively. The performances of all three retrackers are also compared with the European Space Agency&rsquo;s ocean retracker in the Sentinel-3 Level-2 product.


Author(s):  
R. Asmaranto ◽  
D. Sisinggih ◽  
R.N.A Rastanto

Lots of dam failures are the result of uncontrolled seepage. The collapse of the Situ Gintung Dam in Tangerang, Banten-Indonesia in 2009 due to heavy rains caused the dam structure to collapse. This is due to increased pore water pressure in the landfill. To anticipate collapse due to uncontrolled seepage, it is necessary to monitor it based on the behavior of changes in rainfall and reservoir water levels. Seepage within the dam body is often monitored using instrumentation tools such as standpipe piezometer (standpipe piezometer) or electric piezometer. But often the piezometer cannot work properly because it is clogged, so it cannot monitor the condition of the seepage. Other instrumentations such as V-Notch are also used to measure seepage discharge. This study aims to determine the behavior of changes in the reservoir water level caused by changes in rainfall and its effect on body seepage of the earth-fill Type dam. By knowing the phenomenon of the behavior of the relationship between reservoir water infiltration and rainfall, it will obtain information on rainfall that endangers the dam which will affect the downstream. In this study, a case study of the Selorejo Dam was taken which has a large enough reservoir capacity of about 31 million m3 which is included in the Brantas River Basin. The results showed that 5 piezometers devices were damaged (SL 1, SL 2, SL 4, SL 6, and SL 7) where they could not read the phreatic water level properly, and 2 piezometers were less sensitive to reading fluctuations in reservoir water levels. namely SL 10 and SL 11 which showed R2 values of 29.78% and 39.4%, respectively. While the maximum seepage discharge is recorded at 1474 liters/minute, this is still below the critical discharge of 1630 liters/minute allowed for this dam, but this needs to be a concern, especially the discharge from toe drain from the left side seepage and C-area which is the leakage from the left support pedestal also contributes a larger discharge than other observation points.


Author(s):  
S. Chander ◽  
D. Ganguly ◽  
A. K. Dubey ◽  
P. K. Gupta ◽  
R. P. Singh ◽  
...  

Satellite altimetry for inland water applications has evolved from investigation of water height retrieval to monitoring since last two decades. Altimetry derived reservoir/ river levels can subsequently be used to deal with key inland water resources problems such as flood, rating curve generation for remote locations, reservoir operations, and calibration of river/lake models. In this work 29 inland water bodies were selected over Indian region to monitor from satellite altimetry. First cut selection of potential water bodies was based on availability of altimeter tracks and geographic locations. Then feasibility study was carried out to check the potential of availability of in-situ measurement and scope of GPS survey for final selection. An algorithm is proposed and tested for the waterlevel retrieval over the Ukai Reservoir which fulfil all the necessary requirements. The methodology is based on averaged high rate waveforms, modified retracker and range corrections. The results were then validated with the GPS survey and in-situ tide gauge dataset. SARAL derived water-level information for six different retrackers were compared with the in-situ tide-gauge dataset installed close to the Ukai Dam. Averaged high rate waveforms were analysed for better performance, i.e. single 40 Hz, and multiple 40-Hz. A field trip was conducted on 17th January 2014, same day on the SARAL pass, using two Dual frequency GPS instruments. New improved retracker work best with overall RMSE within the range of 8 cm. The results supports that AltiKa dataset can be utilized for more accurate water level information over inland water bodies.


2018 ◽  
Vol 162 ◽  
pp. 01008
Author(s):  
Mohammed Fattah ◽  
Mahmood Ahmed ◽  
Nawar Ali

In this paper, the finite element method is uzed to solve the governing equations of flow through earth dams. The computer program Geo-Slope is used in the analysis through its sub-program named SEEP/W. A case study is considered to be Al-Adhaim dam which consists of zoned embankment with a total length of 3.1 km. The dam in its actual design is analyzed. Then, an attempt is made to study the seepage in unsaturated zone of the dam through studying the effect of several parameters including the effect of changing the unsaturated hydraulic conductivity with the degree of saturation of the core soil and changing of water level in the reservoir. A procedure is proposed to define the hydraulic conductivity function from the soil water characteristic curve which is measured by the filter paper method. Fitting methods are applied through the program SoilVision. A parametric study was carried out and different parameters were changed to study their effects on the behavior of partially saturated soil. The study reveals that the rate of flow is decreased by about 20 - 27% when the degree of saturation of the core material is decreased from 100% to 50% at water level 115.75 m, while the exit gradient of flow is decreased by about 13 -15%. This decrease in flow rate becomes 13-15% and 8-9.5% when the reservoir water level is 131.5 m and 143.5 m, respectively, while the exit gradient of flow is increased by about 23-29.5% and 29-29.5% when the reservoir water level is 131.5 m and 143.5 m, respectively. When the state of soil changes from fully saturated S= 100% to partially saturated S= 90%, a rapid increase in head gradient and pore water takes place at the embankment base for different water levels in the reservoir. This decrease plateaus out on further decrease in the degree of saturation.


2013 ◽  
Vol 739 ◽  
pp. 283-286 ◽  
Author(s):  
Li Ming Wu ◽  
Zhen Qiang Wang

Since the three Gorges reservoir Water storage, reservoir water level have about 30m water levels fluctuation every year, different level will lead to the bank slope infiltration lines rise and fall, and influent on the bank slopes stability. The test according to Manzo reservoir laboratory test data and geological survey report, using the finite element software of ANSYS to establish the finite element model. The model put different water level decline speed, different osmotic coefficient and the different infiltration recharge tension cases to analysis separately,the result shows:1) more greater the reductions speed, more steeper the saturation lines luffing, more adverse the slopes stability;2) more smaller the permeability coefficient, more poor the slopes drainage capacity,more steeper the infiltration line, more poor the slopes stability; 3) seepage lines position higher than no infiltration seepage lines position.


Sign in / Sign up

Export Citation Format

Share Document