scholarly journals Rift Transfer Zones and the Stages of Rift Linkage in Active Segmented Continental Rift Systems

2021 ◽  
Author(s):  
Folarin Kolawole ◽  
Max Firkins ◽  
Thuwaiba Al Wahaibi ◽  
Estella Atekwana ◽  
Michael Soreghan
2008 ◽  
Vol 9 (3) ◽  
pp. 287-302 ◽  
Author(s):  
Barbara L. Wilson ◽  
Dale C. Darris ◽  
Rob Fiegener ◽  
Randy Johnson ◽  
Matthew E. Horning ◽  
...  

2021 ◽  
pp. 1-20
Author(s):  
Xiao-Fei Qiu ◽  
Qiong Xu ◽  
Tuo Jiang ◽  
Shan-Song Lu ◽  
Long Zhao

Abstract The South Qinling block, a segment of the Yangtze craton involved in the Qinling–Dabie orogen, is critical for understanding the tectonic evolution of eastern China. However, the tectonic setting of the South Qinling block and the northern margin of the Yangtze block during middle Neoproterozoic time has long been the subject of debate, with two distinctly different models (continental rift or volcanic arc) proposed. Here, a comprehensive study of zircon U–Pb geochronology and geochemistry has been carried out on the Chengwan granitic pluton from the Suizao terrane in the South Qinling block. The granites are monzogranite and syenogranite in lithology, and are mainly composed of potash feldspar, quartz, plagioclase and biotite. This suite has long been regarded as a Palaeozoic magmatic pluton, but zircon U–Pb ages of 809 ± 9 Ma and 816 ± 4 Ma are obtained in this study. The granites are metaluminous to strongly peraluminous with high alkali contents, and exhibit highly fractionated features, including high SiO2, low Zr/Hf ratios, rare earth element tetrad effects and enrichment of K and Rb. They show Hf–Nd isotopic decoupling, which may be genetically related to their petrogenetic process. Based on the geochemical features and the positive εHf(t) values of the zircons, it is indicated that the granites may have been derived from partial melting of juvenile tonalitic rocks by biotite breakdown under fluid-absent conditions. The Chengwan granite geochemically belongs to the A2-subtype granites, suggesting that it might have formed in a post-orogenic tectonic setting. The highly fractionated A-type granite in this study may represent extensional collapse shortly after the collisional events in the South Qinling block, and thus indicate a tectonic regime switch, from compression to extension, as early as middle Neoproterozoic time. Integrating our new data with documented magmatic, metamorphic and sedimentary events during middle Neoproterozoic time in the region may support a continental rift model, and argues against arc models.


2015 ◽  
Vol 35 (1) ◽  
pp. 174-188 ◽  
Author(s):  
Andrea T. Kramer ◽  
Daniel J. Larkin ◽  
Jeremie B. Fant

Botany ◽  
2010 ◽  
Vol 88 (8) ◽  
pp. 725-736 ◽  
Author(s):  
R. C. Johnson ◽  
Vicky J. Erickson ◽  
Nancy L. Mandel ◽  
J. Bradley St Clair ◽  
Kenneth W. Vance-Borland

Seed transfer zones ensure that germplasm selected for restoration is suitable and sustainable in diverse environments. In this study, seed zones were developed for mountain brome ( Bromus carinatus Hook. & Arn.) in the Blue Mountains of northeastern Oregon and adjoining Washington. Plants from 148 Blue Mountain seed source locations were evaluated in common-garden studies at two contrasting test sites. Data on phenology, morphology, and production were collected over two growing seasons. Plant traits varied significantly and were frequently correlated with annual precipitation and annual maximum temperature at seed source locations (P < 0.05). Plants from warmer locations generally had higher dry matter production, longer leaves, wider crowns, denser foliage, and greater plant height than those from cooler locations. Regression models of environmental variables with the first two principal components (PC 1 and PC 2) explained 46% and 40% of the total variation, respectively. Maps of PC 1 and PC 2 generally corresponded to elevation, temperature, and precipitation gradients. The regression models developed from PC 1 and PC 2 and environmental variables were used to map seed transfer zones. These maps will be useful in selecting mountain brome seed sources for habitat restoration in the Blue Mountains.


AAPG Bulletin ◽  
2013 ◽  
Vol 97 (5) ◽  
pp. 759-780 ◽  
Author(s):  
Debapriya Paul ◽  
Shankar Mitra

2014 ◽  
Vol 114 (3) ◽  
pp. 489-498 ◽  
Author(s):  
Krishna K. Dwivedi ◽  
Dominique J. Roche ◽  
Tom E. Clemente ◽  
Zhengxiang Ge ◽  
John G. Carman

2018 ◽  
Vol 309 ◽  
pp. 22-44 ◽  
Author(s):  
Wei Terry Chen ◽  
Wei-Hua Sun ◽  
Mei-Fu Zhou ◽  
Wei Wang

2016 ◽  
Vol 693 ◽  
pp. 239-260 ◽  
Author(s):  
Frank Zwaan ◽  
Guido Schreurs ◽  
John Naliboff ◽  
Susanne J.H. Buiter

Sign in / Sign up

Export Citation Format

Share Document