scholarly journals Design of a rapid transit to Mars mission using laser-thermal propulsion

2022 ◽  
Author(s):  
Emmanuel Duplay ◽  
Zhuo Fan Bao ◽  
Sebastian Rodriguez Rosero ◽  
Arnab Sinha ◽  
Andrew Jason Higgins

The application of directed energy to spacecraft mission design is explored using rapid transit to Mars as the design objective. An Earth-based laser array of unprecedented size (10-m diameter) and power (100 MW) is assumed to be enabled by ongoing developments in photonic laser technology. A phased-array laser of this size and incorporating atmospheric compensation would be able to deliver laser power to spacecraft in cislunar space, where the incident laser is focused into a hydrogen heating chamber via an inflatable reflector. The hydrogen propellant is then exhausted through a nozzle to realize specific impulses of 3000 s. The architecture is shown to be immediately reusable via a burn-back maneuver to return the propulsion unit while still within range of the Earth-based laser. The ability to tolerate much greater laser fluxes enables realizing the combination of high thrust and high specific impulse, making this approach favorable in comparison to laser-electric propulsion and occupying a parameter space similar to gas-core nuclear thermal rockets (without the requisite reactor). The heating chamber and its associated regenerative cooling and propellant handling systems are crucial elements of the design that receive special attention in this study. The astrodynamics and the extreme aerocapture maneuver required at Mars arrival after a 45-day transit are also analyzed in detail. The application of laser-thermal propulsion as an enabling technology for other rapid transit missions in the solar system and beyond is discussed.

Author(s):  
Zhemin Chi ◽  
Yang Wang ◽  
Lin Cheng

The work deals with indirect optimization of minimum-time and minimum-fuel interplanetary trajectories when gridded ion thruster models are considered. Using an accurate model of solar electric propulsion is beneficial in preliminary mission design, and allows including operational constraints. The maximum thrust and the specific impulse are expressed as a function of thruster input power, which is achieved by means of point-fitting lines that match the performance capabilities of the thrusters. Minimum-time and minimum-fuel problems are formulated to be solved by indirect optimization. In order to increase the accuracy and robustness of the shooting procedure, analytic Jacobians are derived, and a hybrid switching detection technique is used to improve the integration accuracy for minimum-fuel problems. Two examples of Earth-to-Mars transfer and Near-Earth rendezvous mission using the realistic NASA’s Evolutionary Xenon Thruster (NEXT) are given to substantiate the feasibility and effectiveness of the proposed method.


Author(s):  
Nicolas Bellomo ◽  
Mirko Magarotto ◽  
Marco Manente ◽  
Fabio Trezzolani ◽  
Riccardo Mantellato ◽  
...  

AbstractREGULUS is an Iodine-based electric propulsion system. It has been designed and manufactured at the Italian company Technology for Propulsion and Innovation SpA (T4i). REGULUS integrates the Magnetically Enhanced Plasma Thruster (MEPT) and its subsystems, namely electronics, fluidic, and thermo-structural in a volume of 1.5 U. The mass envelope is 2.5 kg, including propellant. REGULUS targets CubeSat platforms larger than 6 U and CubeSat carriers. A thrust T = 0.60 mN and a specific impulse Isp = 600 s are achieved with an input power of P = 50 W; the nominal total impulse is Itot = 3000 Ns. REGULUS has been integrated on-board of the UniSat-7 satellite and its In-orbit Demonstration (IoD) is currently ongoing. The principal topics addressed in this work are: (i) design of REGULUS, (ii) comparison of the propulsive performance obtained operating the MEPT with different propellants, namely Xenon and Iodine, (iii) qualification and acceptance tests, (iv) plume analysis, (v) the IoD.


Author(s):  
Maria Teresa Pazienza ◽  
Marco Pennacchiotti ◽  
Michele Vindigni ◽  
Fabio Massimo Zanzotto

Author(s):  
V.V. Volotsuev ◽  
V.V. Salmin

This paper examines the problem of maintaining the plane parameters of the working orbit of a small spacecraft using an electric propulsion engine. In low working orbits, due to the Earth’s atmosphere, a spacecraft is subjected to aerodynamic drag forces, which results in a decrease in the radius of the orbit and a potential termination of the useful target functioning. The time parameters of the cyclogram for maintaining the working orbit of a small spacecraft with an electric low thrust engine are analyzed taking into account the variability of the atmospheric density. The cyclogram consists of sections of the passive and active movement under the action of the low thrust engine. For the satellite under study, suitable thrust parameters of the electric engine are selected, which allow the correction of the plane parameters of the low orbit. Using the characteristics of the thrust and specific impulse of the electric jet engine, fuel reserves for correction over a long period of time are calculated. The results of the analysis confirm the effectiveness of the electric propulsion engine in terms of fuel consumption for correction.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
A. I. Bugrova ◽  
A. M. Bishaev ◽  
A. V. Desyatskov ◽  
M. V. Kozintseva ◽  
A. S. Lipatov ◽  
...  

Stationary plasma thrusters are attractive electric propulsion systems for spacecrafts. The usual propellant is xenon. Among the other suggested propellants, krypton could be one of the best candidates. Most studies have been carried out with a Hall effect thruster previously designed for xenon. The ATON A-3 developed by MSTU MIREA (Moscow) initially defined for xenon has been optimized for krypton. The stable high-performance ATON A-3 operation in Kr has been achieved after optimization of its magnetic field configuration and its optimization in different parameters: length and width of the channel, buffer volume dimensions, mode of the cathode operation, and input parameters. For a voltage of 400 V and the anode mass flow rate of 2.5 mg/s the anode efficiency reaches 60% and the specific impulse reaches 2900 s under A-3 operating with Kr. The achieved performances under operation A-3 with Kr are presented and compared with performances obtained with Xe.


2012 ◽  
Vol 503-504 ◽  
pp. 1357-1359
Author(s):  
Qiang Wu ◽  
Hao Xiong ◽  
Guang Wei Meng ◽  
Li Bing Zhou

This paper applies identification technique to the marine electric propulsion system analysis, adopts the recursive extended least squares (RELS) algorithm to estimate the structure and parameters of the model, employs the variable forgetting factors into the algorithm to improve the tracking characteristic of the parameters, establishes the dynamic model of a simulated electric propulsion unit under the excitation control based on the experiment data, and finally verifies the validity of the method through the consistency between simulation result and experimental result.


Sign in / Sign up

Export Citation Format

Share Document