The study of progressive collapse in dual systems

2019 ◽  
Author(s):  
Hossein Alimohammadi

Throughout this paper, progressive collapse of steel structure with dual system considering the removing column scenario is studied. Due to this objective, two lateral load resisting systems, are modeled in ABAQUS software with omitting various columns, and the performance of systems against progressive collapse are compared with each other. The results represent that whenever a structure is experiencing an unusual external load such as the collision of a vehicle, the most critical columns are those placed at the nearest external frame of the structure. Thus, these members should be considered as highly important members because they could play a significant role in progressive collapse potential reduction as key members.

2020 ◽  
Vol 16 (1) ◽  
pp. 79-85
Author(s):  
Hossein Alimohammadi ◽  
Keyvan Yashmi Dastjerdi ◽  
Mohammadali Loftollahi Yaghin

AbstractThroughout this paper, the progressive collapse of steel structure with dual system is studied by considering the removing column scenario. Due to this objective, two lateral load resisting systems are modeled in ABAQUS software with omitting various columns, and the performance of systems against progressive collapse are compared with each other. The results of performed finite element simulations represent that whenever a structure is experiencing an unusual external load such as collision of a vehicle, the most critical columns are those placed at the nearest external frame of the structure. Thus, these members should be considered as highly important members because they could play a significant role in progressive collapse potential reduction as key members.


2021 ◽  
pp. 136943322199249
Author(s):  
Riza Suwondo ◽  
Lee Cunningham ◽  
Martin Gillie ◽  
Colin Bailey

This study presents robustness analyses of a three-dimensional multi-storey composite steel structure under the action of multiple fire scenarios. The main objective of the work is to improve current understanding of the collapse resistance of this type of building under different fire situations. A finite element approach was adopted with the model being firstly validated against previous studies available in the literature. The modelling approach was then used to investigate the collapse resistance of the structure for the various fire scenarios examined. Different sizes of fire compartment are considered in this study, starting from one bay, three bays and lastly the whole ground floor as the fire compartment. The investigation allows a fundamental understanding of load redistribution paths and member interactions when local failure occurs. It is concluded that the robustness of the focussed building in a fire is considerably affected by the size of fire compartments as well as fire location. The subject building can resist progressive collapse when the fire occurs only in the one-bay compartment. On the other hand, total collapse occurs when fire is located in the edge three-bay case. This shows that more than one fire scenario needs to be taken into consideration to ensure that a structure of this type can survive from collapse in the worst-case situation.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Aidin Mohammadi ◽  
Alireza Pachenari ◽  
Behnam Sadeghi

This study investigates the behavior and the load-bearing mechanism of a typical flat slab with rectangular panels in several scenarios including the removal of a corner, penultimate, and internal columns. The scenarios are rather similar to those used in the conventional evaluation of the progressive collapse potential; however, application of the uniformly distributed loading over panels adjacent to the removed columns was not limited to twice the value of the initial load. Thus, load-deflection curves were drawn up to the point in which a great number of longitudinal slab bars ruptured. Introducing 5 stages on each curve, finite element outputs on concrete cracking pattern and rebar stress state were presented. A significant increase in the stresses along the diagonals of the slab panels accompanied by bar ruptures around columns adjacent to the removed column proved contribution of an important load-bearing mechanism in addition to the behavior called “quasiframe action.” Consecutive rupture of bars showed formation of a zipper-type collapse mode as well as a great tendency to transfer load share of missing column mainly along shorter direction of slab panels. Moreover, the findings indicated that the slab damaged zone could exceed the panels under uniform overloading.


2019 ◽  
Vol 105 ◽  
pp. 896-918 ◽  
Author(s):  
Hussein M. Elsanadedy ◽  
Yousef A. Al-Salloum ◽  
Tarek H. Almusallam ◽  
Tuan Ngo ◽  
Husain Abbas

2011 ◽  
Vol 378-379 ◽  
pp. 775-779
Author(s):  
M. Mirtahery ◽  
Zoghi M. Abbasi

Since Ronan Point tower local collapse in UK in 1968, progressive collapse phenomenon in structures attracted more attention for civil engineers all over the world so there were no useful researches and manual codes related to progressive collapse designing before. Progressive collapse occurs when loading pattern, boundary condition and resisting path changed, so critical elements undergo excessive unpredicted loading. We cannot omit reason of collapse as well as prevention of distribution of it that cause progressive collapse. Also, we cannot predict exact location of collapse beginning, so we should generalized design guides to whole or part of structures elements based on risk analyzing. Also we can use load carrying element removal scenario for critical elements. To prevent progressive collapse, structural systems require to having a well-distributed, redundant lateral load resisting system and ductile connections capable of undergoing large inelastic rotations without failing. There are some new guides and criteria for elements and connections to be designed to resist progressive collapse. Depends on required accuracy, importance of the buildings and acceptable risk level, the analysis methodologies ranged from linear to nonlinear with static and dynamic approaches. In this paper, codes and researches recommendations to resist progressive collapse for steel structures are presented, classified and compared. Also, applicable design methods based on codes and some retrofitting methods are summarized.


2014 ◽  
Vol 7 (5) ◽  
pp. 845-855
Author(s):  
C. E. M. Oliveira ◽  
E. A. P. Batelo ◽  
P. Z. Berke ◽  
R. A. M. Silveira ◽  
T. J. Massart

This work investigates the response of two reinforced concrete (RC) plane frames after the loss of a column and their potential resistance for progressive collapse. Nonlinear dynamic analysis is performed using a multilayered Euler/Bernoulli beam element, including elasto-viscoplastic effects. The material nonlinearity is represented using one-dimensional constitutive laws in the material layers, while geometrical nonlinearities are incorporated within a corotational beam formulation. The frames were designed in accordance with the minimum requirements proposed by the reinforced concrete design/building codes of Europe (fib [1-2], Eurocode 2 [3]) and Brazil (NBR 6118 [4]). The load combinations considered for PC analysis follow the prescriptions of DoD [5]. The work verifies if the minimum requirements of the considered codes are sufficient for enforcing structural safety and robustness, and also points out the major differences in terms of progressive collapse potential of the corresponding designed structures.


Sign in / Sign up

Export Citation Format

Share Document